K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

hỏi nhé x dương ko nếu dương thì làm theo cách này nhé bạn

áp dụng BĐT cô-si ( \(a+b\ge2\sqrt{ab}\)với a,b>0) ta có:

\(\frac{\left(x+16\right)\left(x+9\right)}{x}\ge\frac{2\sqrt{16x}.2\sqrt{9x}}{x}\)=\(\frac{2.4.\sqrt{x}.2.3.\sqrt{x}}{x}=\frac{48.x}{x}=48\)

23 tháng 4 2017

éo mk nhầm một chút bạn ạ làm lại nhé

\(\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}\)=\(x+25+\frac{144}{x}=\left(x+\frac{144}{x}\right)+25\ge\)\(2\sqrt{x.\frac{144}{x}}+25\)

=2.12+25=49(áp dụng BĐT cô-si)

dấu ''='' xảy ra khi và chỉ khi x=\(\frac{144}{x}\)hay x=12

18 tháng 11 2017

Sửa đề: Cho a , b ,c dương thỏa mãn: a + b + c = 6abc .   Phần dưới vẫn như vậy.

Ta có thể viết:

\(Q=\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\Leftrightarrow Q=\frac{1}{a^3}+\frac{bc}{c+2b}+\frac{1}{b^3}+\frac{ca}{a+2c}+\frac{1}{c^3}+\frac{ab}{b+2a}\)

\(\Rightarrow a=b=c\)

\(\Leftrightarrow Q=\frac{1}{a^3b^3c^3}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\Leftrightarrow\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]^9}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\)

Do đó:

\(Q^9=\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}\Rightarrow Q^9\ge0\) , mà a , b ,c thỏa mãn a + b + c = 6abc

Vậy GTNN của Q là:    6000 : 9 = 666,6

Vậy dấu "=" xảy ra khi và chỉ khi \(\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}=666,6\) 

\(\Rightarrow Q\) đạt GTNN bằng 666,6 và khi a =b =c = 666,6

Ps: Giải chơi nhé! Đừng làm theo! Mình không chịu trách nhiệm hay bất cứ hình phạt nào như: Trừ điểm hỏi đáp, hack nic mình đâu nhé!

NV
14 tháng 3 2019

Với \(x\ne0\), đặt \(\left|x\right|=a>0\)

\(A=\frac{\left(a^2+18a+32\right)\left(a^2+9a+8\right)}{a^2}=\frac{\left(a+2\right)\left(a+16\right)\left(a+1\right)\left(a+8\right)}{a^2}\)

\(A=\frac{\left(a+2\right)\left(a+8\right)\left(a+1\right)\left(a+16\right)}{a^2}=\frac{\left(a^2+10a+16\right)\left(a^2+17a+16\right)}{a^2}\)

\(A=\frac{\left(a^2+16+10a\right)}{a}.\frac{\left(a^2+16+17a\right)}{a}=\left(a+\frac{16}{a}+10\right)\left(a+\frac{16}{a}+17\right)\)

\(\Rightarrow A\ge\left(2\sqrt{a.\frac{16}{a}}+10\right)\left(2\sqrt{a.\frac{16}{a}}+17\right)=\left(8+10\right)\left(8+17\right)=450\)

\(\Rightarrow A_{min}=450\) khi \(a^2=16\Rightarrow a=4\Rightarrow x=\pm4\)

14 tháng 3 2019

@Nguyễn Việt Lâm

15 tháng 6 2017

\(P=\frac{x^2}{x+4}.\left(\frac{x^2+16}{x}+8\right)+9=x^2+4x+9\)

\(=\left(x+2\right)^2+5\ge5\)

Dấu = xảy ra khi \(x=-2\)

20 tháng 6 2017

thanks

19 tháng 3 2017

\(A=\dfrac{\left(x+16\right)\left(x+9\right)}{x}\)

\(A=\dfrac{x^2+25x+144}{x}\)

Vì x>0 nên ta được quyền rút gọn

\(A=x+25+\dfrac{144}{x}\)

Vì x>0 nên \(\dfrac{144}{x}>0\)

Áp dụng BĐT AM-GM cho \(x+\dfrac{144}{x}\left(x>0\right)\), ta có:

\(\dfrac{x+\dfrac{144}{x}}{2}\ge\sqrt{\dfrac{x.144}{x}}\)

\(x+\dfrac{144}{x}\ge2.\sqrt{144}\)

\(x+\dfrac{144}{x}\ge24\)

\(A=x+\dfrac{144}{x}+25\ge24+25\)

Vậy MinA =49 khi \(x=\dfrac{144}{x}\)

\(x=\dfrac{144}{x}\)

\(x^2=144\)

\(x=\pm12\)

Chọn nghiệm x=12 ( x>0)

Vậy: MinA=49 khi x=12

24 tháng 1 2021

\(A=x+13+\dfrac{36}{x}=\left(x+\dfrac{36}{x}\right)+13\ge2\sqrt{\dfrac{x.36}{x}}+13=12+13=25.\text{ Dấu }"="\text{ xảy ra khi: }x=\dfrac{36}{x}\text{ hay: }x=6\)

Ta có: \(A=\dfrac{x^2+13x+36}{x}=\dfrac{25x+x^2-12x+36}{x}\) \(=\dfrac{25x+\left(x-6\right)^2}{x}=25+\dfrac{\left(x-6\right)^2}{x}\ge25\)

Dấu bằng xảy ra \(\Leftrightarrow x=6\)

 Vậy \(Min_A=25\) khi \(x=6\)

13 tháng 1 2021

Ta có: \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)

Các số dương : x và \(\frac{144}{x}\) có tích k đổi nên tổng nhỏ nhất và chỉ khi  \(x=\frac{144}{x}\)=> x=12

Vậy Min A = 49 khi và chỉ khi x=12

13 tháng 1 2021

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)

Vì \(x>0\)\(\Rightarrow\) Áp dụng bđt Cô si ta có:

\(x+\frac{144}{x}\ge2\sqrt{x.\frac{144}{x}}=2.\sqrt{144}=2.12=24\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{144}{x}\)\(\Leftrightarrow x^2=144\)\(\Leftrightarrow x=12\)( do \(x>0\))

\(\Rightarrow A\ge25+24=49\)

Vậy \(minA=49\)\(\Leftrightarrow x=12\)