\(A=\frac{\left(x^2+18\left|x\right|+32\right)\left(x^2+9\left|x\right|+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2019

Với \(x\ne0\), đặt \(\left|x\right|=a>0\)

\(A=\frac{\left(a^2+18a+32\right)\left(a^2+9a+8\right)}{a^2}=\frac{\left(a+2\right)\left(a+16\right)\left(a+1\right)\left(a+8\right)}{a^2}\)

\(A=\frac{\left(a+2\right)\left(a+8\right)\left(a+1\right)\left(a+16\right)}{a^2}=\frac{\left(a^2+10a+16\right)\left(a^2+17a+16\right)}{a^2}\)

\(A=\frac{\left(a^2+16+10a\right)}{a}.\frac{\left(a^2+16+17a\right)}{a}=\left(a+\frac{16}{a}+10\right)\left(a+\frac{16}{a}+17\right)\)

\(\Rightarrow A\ge\left(2\sqrt{a.\frac{16}{a}}+10\right)\left(2\sqrt{a.\frac{16}{a}}+17\right)=\left(8+10\right)\left(8+17\right)=450\)

\(\Rightarrow A_{min}=450\) khi \(a^2=16\Rightarrow a=4\Rightarrow x=\pm4\)

14 tháng 3 2019

@Nguyễn Việt Lâm

4 tháng 7 2020

easy !

Áp dụng bđt cauchy schwarz dạng engel :

\(VT=\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{3^2}{1}=9\)

dấu = xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

Có thưởng thì thưởng số chẵn a nhé :)) ko thích 1001 đâu !

Bài 1 : 

a, \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)

\(=x-2x^2+2x^2-x+d=d\)

Đặt \(f\left(x\right)=0\)hay \(d=0\)

Vậy phươnng trình có nghiệm là d = 0 (đề có j sai ko nhỉ?)

b, \(g\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)

Ta có : \(\left(-1\right)^2-4=1-4< 0\)Vô nghiệm 

8 tháng 7 2018

1272 + 146.127 + 732

= 1272 + 2 . 73 .127 + 732

= (127 + 73 ) 2

= 200 2

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

4 tháng 8 2019

A = \(\frac{1}{x\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+8\right)}\)

= \(\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+8}\)

= \(\frac{1}{x}-\frac{1}{x+8}\)

= \(\frac{x+8}{x\left(x+8\right)}-\frac{x}{x\left(x+8\right)}\)

= \(\frac{x+8-x}{x\left(x+8\right)}\) = \(\frac{8}{x\left(x+8\right)}\)

6 tháng 3 2018

Hỏi đáp Toán

NV
30 tháng 5 2020

Cần điều kiện x;y dương

\(M=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)

\(M\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)

\(M_{min}=\frac{25}{2}\) khi \(x=y=\frac{1}{2}\)