K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

Ta có: (3x+1)4 0 và \(Ix^2-\frac{1}{9}I\ge0\) Với mọi x

=> \(\left(3x+1\right)^4+Ix^2-\frac{1}{9}I+5\ge5\) với mọi x

=> \(\frac{2015}{\left(3x+1\right)^4+Ix^2-\frac{1}{9}I+5}\le\frac{2015}{5}=403\)

=> GTLN của biểu thức là 403

Đạt được khi x=-1/3

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

21 tháng 3 2017

\(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}\)

Dễ thấy \(x\ne0\) do \(x\) là mẫu nên ta có: 

\(A=x+13+\frac{36}{x}\). Do \(x>0\) nên ta áp dụng BĐT AM-GM:

\(x+\frac{36}{x}\ge2\sqrt{x\cdot\frac{36}{x}}=2\sqrt{36}=12\)

\(\Rightarrow A\ge13+12=25\)

Đẳng thức xảy ra khi \(x=\frac{36}{x}\Rightarrow x^2=36\Rightarrow x=6\left(x>0\right)\)

15 tháng 6 2017

Ta có : \(\left|x\right|\ge0\forall x\in R\)

=> \(\left|x\right|+\frac{4}{7}\ge\frac{4}{7}\forall x\in R\)

=> GTNN của biểu thức là \(\frac{4}{7}\)  khi x = 0

15 tháng 6 2017

Ta có : |x - 2010| \(\ge0\forall x\in R\)

           |x - 1963| \(\ge0\forall x\in R\)

Nên |x - 2010| + |x - 1963| \(\ge0\forall x\in R\)

Mà x ko thể đồng thời có 2 giá trị nên

GTNN của biểu thức là : 2010 - 1963 = 47 khi x = 2010 hoặc 1963 

31 tháng 7 2015

Phá dấu giá trị tuyệt đối : 

\(\left|x+\frac{3}{5}\right|=x+\frac{3}{5}\) nếu  x \(\ge\) \(-\frac{3}{5}\) và \(\left|x+\frac{3}{5}\right|=-\left(x+\frac{3}{5}\right)\) nếu x  < \(-\frac{3}{5}\)

\(\left|x+\frac{1}{5}\right|=x+\frac{1}{5}\) nếu x \(\ge\) \(-\frac{1}{5}\) và \(\left|x+\frac{1}{5}\right|=-\left(x+\frac{1}{5}\right)\) nếu x < \(-\frac{1}{5}\)

|x + 3| = x + 3 nếu x \(\ge\) -3 và |x + 3| = - (x+3) nếu x < -3

Xét các khoảng như sau:

+) Nếu x < - 3 thì A = \(-\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) - (x+3) = -x - \(\frac{3}{5}\) - x - \(\frac{1}{5}\) - x - 3 = -3x  \(-\frac{19}{5}\) > (-3). (-3)  \(-\frac{19}{5}\) = 26/5

+) Nếu -3 \(\le\) x < \(-\frac{3}{5}\) thì  A = \(-\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) + x + 3 = -x +  11/5  > - (-3/5) + 11/5 = 14/5

+) Nếu  \(-\frac{3}{5}\) \(\le\) x < \(-\frac{1}{5}\) => A = \(\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) + x+ 3 = x + \(\frac{17}{5}\) \(\ge\) (-3/5) + 17/5 = 14/5

+) Nếu x \(\ge\) \(-\frac{1}{5}\)=> A = \(\left(x+\frac{3}{5}\right)\) + \(\left(x+\frac{1}{5}\right)\) + x+ 3 = 3x + 19/5 \(\ge\) 3. (-1/5) + 19.5 = 16/5

Từ các trường  hợp trên => A nhỏ nhất bằng  14/5 khi  \(-\frac{3}{5}\) \(\le\) x < \(-\frac{1}{5}\)