K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

Ta có: (x + 2)(x + 4) > (x – 2)(x + 8) + 26

      ⇔ x 2  + 6x + 8 >  x 2  + 6x + 10

      ⇔  x 2  + 6x -  x 2  - 6x > 10 - 8

       ⇔ 0x > 2

Vậy bất phương trình vô nghiệm.

3 tháng 5 2021

a, \(x^2-8x+16=81\Leftrightarrow x^2-8x-65=0\)

\(\Leftrightarrow\left(x-13\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=13\)

Vậy tập nghiệm của pt là S = { -5 ; 13 } 

b, \(\frac{2x+2}{5}+\frac{3}{10}< \frac{3x-2}{4}\)

\(\Leftrightarrow\frac{8x+8+6}{20}< \frac{15x-10}{20}\Leftrightarrow8x+14< 15x-10\)

\(\Leftrightarrow-7x< -24\Leftrightarrow x>\frac{24}{7}\)

Vậy tập nghiệm của BFT là S = { x | x > 24/7 } 

c, \(\frac{2}{x-2}+\frac{3}{x-3}=\frac{3x-20}{x^2}\)ĐK : \(x\ne0;2;3\)

\(\Leftrightarrow\frac{2x^2\left(x-3\right)+3x^2\left(x-2\right)}{x^2\left(x-2\right)\left(x-3\right)}=\frac{\left(3x-20\right)\left(x-2\right)\left(x-3\right)}{x^2\left(x-2\right)\left(x-3\right)}\)

tự khử mẫu, làm tiếp nhé, mình bị lười :>

3 tháng 5 2021

d, \(3\left(x-11\right)-2\left(x+11\right)=1964\)

\(\Leftrightarrow3x-33-2x-22=1964\Leftrightarrow x-55=1964\Leftrightarrow x=2019\)

Vâỵ tập nghiệm của pt là S = { 2019 } 

e, \(\left|2x-3\right|=5\)

Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=5\Leftrightarrow x=4\)( tm )

Với \(x< \frac{3}{2}\)pt có dạng : \(-2x+3=5\Leftrightarrow-2x=2\Leftrightarrow x=-1\)( tm )

Vậy tập nghiệm của pt là S = { -1; 4 } 

g, \(\frac{-2x+14}{x-5}+\frac{5x-3}{2x}=\frac{8}{x\left(x-5\right)}\)ĐK : \(x\ne0;5\)

\(\Leftrightarrow\frac{2x\left(-2x+14\right)+\left(5x-3\right)\left(x-5\right)}{2x\left(x-5\right)}=\frac{16}{2x\left(x-5\right)}\)

Tự khử mẫu tự giải nhá :> 

17 tháng 6 2021
Dấu (^) là mũ nha
17 tháng 6 2021

toán lp 1 ???

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

28 tháng 1 2022

\(\dfrac{x^2-26}{10}+\dfrac{x^2-25}{11}\ge\dfrac{x^2-24}{12}+\dfrac{x^2-23}{13}\)

\(\Leftrightarrow\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)

\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)

\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)

\(\Leftrightarrow\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)

Vì \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\Rightarrow x^2-36\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x\ge6\end{matrix}\right.\)

28 tháng 1 2022

Bất phương trình đó tương đương với:

 \(\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)

⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)

⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)

⇔ \(\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)

+)Vì \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\) 

⇔ \(x^2-36\ge0\)

⇔ \(x^2\ge36\)

⇔ \(\sqrt{x^2}\ge6\)

⇔ \(\left|x\right|\ge6\)

⇔ \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)

➤ Vậy \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)

13 tháng 3 2016

<=>x2-8x+16>x2-12x

<=>-8x+16>-12x

<=>4x>-16

<=>x>-4

Mà x<0 và x E Z nên: x={-3;-2;-1}

Như zậy thì có 3 nghiệm nguyên âm -_-

13 tháng 3 2016

<=>x2-8x+16>x2-12x

=>-8x+16>12x

<=>4x>-16

=>x>-4

ma la nghiem am => x< 0 <=> x E Z

=>x={-3;-2;-1}

=> co 3 nghiem am

a: \(\Leftrightarrow2x^2+4x+4>x^2+4x+4\)

=>x2>0

hay x<>0

b: \(\Leftrightarrow x^2+6x+8-\left(x^2+6x-16\right)-26>0\)

\(\Leftrightarrow x^2+6x-18-x^2-6x+16>0\)

=>-2>0(vô lý)