Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
a/ Cho x, y ≥ 1. Chứng minh: 1/(1 + x^2) + 1/(1 + y^2) ≥ 2/(1 + xy)
b/ Đề:...Tìm GTLN
Có:
\(\dfrac{1}{4x^2-4x+2}=\dfrac{1}{\left(2x-1\right)^2+1}\le\dfrac{1}{2}\forall x\ge1\)
\(\dfrac{1}{9y^2+6y+2}=\dfrac{1}{\left(3y+1\right)^2+1}\le\dfrac{1}{2}\forall y\ge0\)
\(\Rightarrow A=\dfrac{1}{4x^2-4x+2}+\dfrac{1}{9y^2+6y+2}\le\dfrac{1}{2}+\dfrac{1}{2}=1\)
Vậy MAXA = 1 khi \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
a/ \(\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9x-9}+24.\sqrt{\dfrac{x-1}{64}}=-17\) ( đkxđ : \(x\ge1\) )
\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{3^2\left(x-1\right)}+24.\sqrt{\dfrac{x-1}{8^2}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3.3}{2}.\sqrt{x-1}+\dfrac{24}{8}\sqrt{x-1}=-17\)
\(\Leftrightarrow\) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)=-17\)
\(\Leftrightarrow\sqrt{\left(x-1\right)}.\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{-17}{-1}=17\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=17^2\)
\(\Leftrightarrow x-1=289\)
\(\Leftrightarrow x=289+1=290\)
vậy x= 290 là nghiệm của phương trình a
b/ \(3x-7\sqrt{x}+4=0\) ( đkxđ : \(x\ge0\) )
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(3\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-4=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{4}{3}\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{9}\\x=1\end{matrix}\right.\)
vậy phương trình có tập nghiệm S=\(\left\{1;\dfrac{16}{9}\right\}\)
c/ \(-5x+7\sqrt{x}+12=0\) ( đkxđ: \(x\ge0\) )
\(\Leftrightarrow-\left(5x+5\sqrt{x}-12\sqrt{x}-12\right)=0\)
\(\Leftrightarrow-\left[5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)\right]\)= 0
\(\Leftrightarrow-\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)
vì \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1>0\)
\(\Rightarrow5\sqrt{x}-12=0\)
\(\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Rightarrow x=\dfrac{144}{25}\)
vậy \(x=\dfrac{144}{25}\) là nghiệm của phương trình c
Câu a:
=> √(√x-3)2=2
=>|√x-3|=2
√x-3=2 hoặc √x-3=-2
=> x=25 hoặc x=1
Câu b:
=> (x+2)/17+1+(x+4)/15+1+(x+6)/13+1-(x+8)/11-1-(x+10)/9-1-(x+12)/7-1=0
=> (x+19)/17+(x+19)/15+(x+19)/13-(x+19)/11-(x+19)/9-(x+19)/7=0
=>(x+19)(1/17+1/15+1/13-1/11-1/9-1/7)=0
Vì 1/17+1/15+1/13-1/11-1/9-1/7 khác 0 nên x+19=0 =>x=-19
Bạn gắng đọc nhé vì dùng dt tl nên không viết dc web này tệ qua
Bài 1 :
Câu a : \(\sqrt{\dfrac{1,44}{3,61}}=\sqrt{\dfrac{144}{361}}=\dfrac{\sqrt{144}}{\sqrt{361}}=\dfrac{12}{19}\)
Câu b : \(\sqrt{\dfrac{0,25}{9}}=\sqrt{\dfrac{25}{900}}=\dfrac{\sqrt{25}}{\sqrt{900}}=\dfrac{5}{30}=\dfrac{1}{6}\)
Câu c : \(\sqrt{1\dfrac{13}{36}}.\sqrt{3\dfrac{13}{36}}=\sqrt{\dfrac{49}{36}}.\sqrt{\dfrac{121}{46}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{121}}{36}=\dfrac{7}{6}.\dfrac{11}{6}=\dfrac{77}{36}\)
Câu d : \(\sqrt{\dfrac{1}{121}.3\dfrac{6}{25}}=\sqrt{\dfrac{1}{121}.\dfrac{81}{25}}=\dfrac{1}{\sqrt{121}}.\dfrac{\sqrt{81}}{\sqrt{25}}=\dfrac{1}{11}.\dfrac{9}{5}=\dfrac{9}{55}\)
Câu e : \(\sqrt{1\dfrac{13}{36}.2\dfrac{2}{49}.2\dfrac{7}{9}}=\sqrt{\dfrac{49}{36}.\dfrac{100}{49}.\dfrac{25}{9}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{100}}{\sqrt{49}}.\dfrac{\sqrt{25}}{\sqrt{9}}=\dfrac{7}{6}.\dfrac{10}{7}.\dfrac{5}{3}=\dfrac{25}{9}\)
Bài 2 :
Câu a : \(\dfrac{\sqrt{245}}{\sqrt{5}}=\sqrt{\dfrac{245}{5}}=\sqrt{49}=7\)
Câu b : \(\dfrac{\sqrt{3}}{\sqrt{75}}=\sqrt{\dfrac{3}{75}}=\sqrt{\dfrac{1}{25}}=\dfrac{1}{5}\)
Câu c : \(\dfrac{\sqrt{10,8}}{\sqrt{0,3}}=\sqrt{\dfrac{10,8}{0,3}}=\sqrt{\dfrac{108}{3}}=\sqrt{36}=6\)
Câu d : \(\dfrac{\sqrt{6,5}}{\sqrt{58,5}}=\sqrt{\dfrac{6,5}{58,5}}=\sqrt{\dfrac{65}{585}}=\sqrt{\dfrac{1}{9}}=\dfrac{1}{3}\)
a)
<=>(x-y)+(x-y)/xy≥0
(x-y)(1-1/xy)≥0
x,y≥1=> 1/(xy)≤1=(1-1/(xy)≥0
x≥y=>x-y≥0
=> (x-y)(1-1/xy)≥0 => dccm
dang thuc khi x=y
or x.y=1
Lời giải:
a) \(x=\frac{23(5-\sqrt{2})}{5+\sqrt{2}}=\frac{23(5-\sqrt{2})^2}{(5+\sqrt{2})(5-\sqrt{2})}=\frac{23(5-\sqrt{2})^2}{5^2-2}=(5-\sqrt{2})^2\)
\(\Rightarrow x=5-\sqrt{2}\)
Do đó: \(B=\frac{5-\sqrt{2}+2}{5-\sqrt{2}-5}=\frac{7-\sqrt{2}}{-\sqrt{2}}=\frac{\sqrt{2}-7}{\sqrt{2}}\)
b)
\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}=\frac{x+3\sqrt{x}}{(\sqrt{x}-5)(\sqrt{x}+5)}+\frac{\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}\)
\(=\frac{x+4\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}=\frac{(\sqrt{x}-1)(\sqrt{x}+5)}{(\sqrt{x}-5)(\sqrt{x}+5)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)
Ta có: \(\frac{A}{B}=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{4}{7}\)
\(\Rightarrow 7(\sqrt{x}-1)=4(\sqrt{x}+2)\)
\(\Rightarrow \sqrt{x}=5\Rightarrow x=25\)
c)
\(\frac{A}{B}=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)
Vì \(\sqrt{x}\geq 0\Rightarrow \sqrt{x}+2\geq 2\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}\)
\(\Rightarrow \frac{A}{B}=1-\frac{3}{\sqrt{x}+2}\geq 1-\frac{3}{2}=\frac{-1}{2}\)
Vậy \(P_{\min}=\frac{-1}{2}\Leftrightarrow x=0\)
\(\dfrac{x^2-26}{10}+\dfrac{x^2-25}{11}\ge\dfrac{x^2-24}{12}+\dfrac{x^2-23}{13}\)
\(\Leftrightarrow\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
\(\Leftrightarrow\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
Vì \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\Rightarrow x^2-36\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x\ge6\end{matrix}\right.\)
Bất phương trình đó tương đương với:
\(\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
⇔ \(\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
+)Vì \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\)
⇔ \(x^2-36\ge0\)
⇔ \(x^2\ge36\)
⇔ \(\sqrt{x^2}\ge6\)
⇔ \(\left|x\right|\ge6\)
⇔ \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
➤ Vậy \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)