Chứng minh 1n2 +n+2 không chia hết cho15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mũ kí hiệu là ^ bạn nhé
C = 3 + 3 ^ 2 + 3 ^ 3 + .... + 3^ 60 có 60 số hạng
C = ( 3 + 3 ^ 2 ) + ( 3 ^ 3 + 3 ^ 4 ) + ..... + ( 3 ^ 59 + 3 ^ 60 ) có 60 : 2 = 30 cặp
C = 3 x ( 1 + 3 ) + 3 ^ 3 x ( 1 + 3 ) + .... + 3 ^ 59 x ( 1 + 3 )
C = 3 x 4 + 3 ^ 3 x 4 + ..... + ^ 59 x 4
C = ( 3 + 3 ^ 3 + ... + 3 ^ 59 ) x 4
C = ( 3 + 3^ 3 +... + 3 ^ 59 ) x 2x 2
Vì 2 chia hết cho 2 nên C chia hết cho 2
Câu b,c tương tự,chỉ cần bạn cặp 3 và 4 số lại
\(=3.5.7.21.2003+2.5.2.3.19.23=15.7.21.2003+15.4.19.23=15\left(7.21.2003+4.19.23\right).\)
chia hết cho 15
M=2+22+23+...+220
=(2+22+23+24)+....+(217+218+219+220)
=2(1+2+22+23)+....+217(1+2+22+23)
=2.15+...+217.15
=(2+....+217).15
=> M chia hết cho 15
VÌ 16 \(\div\)15 DƯ 1 \(\Rightarrow\)\(16^N\div15DƯ1\)
\(\Rightarrow16^n-1⋮15\)MÀ 15 \(⋮\) 15 \(\Rightarrow\)15N \(⋮\)15
\(\Rightarrow\)\(16^n-1-15n⋮15\)
HAY
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3