K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2020

x1<2<x2

30 tháng 12 2019

PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)

a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong

b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)

c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\)  quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)

      \(4< m< 6\)

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ... 

Δ=(-2m)^2-4(m^2-m)

=4m^2-4m^2+4m=4m

Để (1) có 2 nghiệm phân biệt thì 4m>0

=>m>0

x1^2+x2^2=4-3x1x2

=>(x1+x2)^2-2x1x2=4-3x1x2

=>(2m)^2+m^2-m=4

=>4m^2+m^2-m-4=0

=>5m^2-m-4=0

=>5m^2-5m+4m-4=0

=>(m-1)(5m+4)=0

=>m=1 hoặc m=-4/5(loại)

21 tháng 4 2016

CHÀO BẠN

Áp dụng Viét

  1. x1*x2=4m (1)
  2. x1+x2=2(m+1) (2)

(*)       (x1+m)(x2+m)=3m^2+12

<=>x1*x2+m(x1+x2)=3m^2+12  (**)

thay (1);(2) vô (**) =>....

Mình bày hướng có chỗ nào sai tự sửa

\(\text{Δ}=\left[-2\left(m-2\right)\right]^2-4\cdot1\cdot\left(3m-3\right)\)

\(=\left(2m-4\right)^2-4\left(3m-3\right)\)

\(=4m^2-16m+16-12m+12\)

\(=4m^2-28m+28\)

Để phương trình có hai nghiệm thì Δ>=0

=>\(4m^2-28m+28>=0\)

\(\Leftrightarrow4m^2-2\cdot2m\cdot7+49-21>=0\)

=>\(\left(2m-7\right)^2>=21\)

=>\(\left[{}\begin{matrix}2m-7>=\sqrt{21}\\2m-7< =-\sqrt{21}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>=\dfrac{7+\sqrt{21}}{2}\\m< =\dfrac{7-\sqrt{21}}{2}\end{matrix}\right.\)

\(\left|x_1\right|-\left|x_2\right|=6\)

=>\(\left(\left|x_1\right|-\left|x_2\right|\right)^2=36\)

=>\(x_1^2+x_2^2-2\left|x_1x_2\right|=36\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)

=>\(\left(-2m+4\right)^2-2\left(3m-3\right)-2\left|3m-3\right|=36\)

=>\(4m^2-16m+16-6m+6-6\left|m-1\right|=36\)

=>\(4m^2-22m+22-36=6\left|m-1\right|\)

=>\(6\left|m-1\right|=4m^2-22m-14\)(1)

TH1: m>=1

(1) tương đương với \(4m^2-22m-14=6\left(m-1\right)\)

=>\(4m^2-22m-14-6m+6=0\)

=>\(4m^2-28m-8=0\)

=>\(m^2-7m-2=0\)

=>\(\left[{}\begin{matrix}m=\dfrac{7+\sqrt{57}}{2}\left(nhận\right)\\m=\dfrac{7-\sqrt{57}}{2}\left(loại\right)\end{matrix}\right.\)

TH2: m<1

(1) tương đương với: \(4m^2-22m-14=6\left(1-m\right)\)

=>\(4m^2-22m-14=6-6m\)

=>\(4m^2-16m-20=0\)

=>m^2-4m-5=0

=>(m-5)(m+1)=0

=>\(\left[{}\begin{matrix}m-5=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)

6 tháng 2 2019

a, Vì 1 < x1 < x2 < 6 nên pt đã cho có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\m< 0\left(h\right)m>3\end{cases}}\)

                               \(\Leftrightarrow m>3\)

Có \(\Delta=9>0\)

Nên pt có 2 nghiệm phân biệt \(x_1=\frac{2m-3-3}{2}=m-3\)

                                                \(x_2=\frac{2m-3+3}{2}=m\)                        (Do m - 3 < m nên x1  < x2 thỏa mãn đề bài)

Vì \(1< x_1< x_2< 6\)

\(\Rightarrow\hept{\begin{cases}m-3>1\\m< 6\end{cases}}\)

\(\Leftrightarrow4< m< 6\)(Thỏa mãn)

c, C1_) Có \(x_1^2+x_2^2=\left(m-3\right)^2+m^2\)

                        \(=m^2-6m+9+m^2\)

                         \(=2m^2-6m+9\)

                         \(=2\left(m^2-3m+\frac{9}{4}\right)+\frac{9}{2}\)

                        \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)

C2_) Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)

Có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

                     \(=\left(2m-3\right)^2-2m^2+6m\)

                     \(=4m^2-12m+9-2m^2+6m\)

                     \(=2m^2-6m+9\)

                       \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" khi \(m=\frac{3}{2}\)

Δ=(2m-2)^2-4(-2m+5)

=4m^2-8m+4+8m-20=4m^2-16

Để PT có hai nghiệm phân biệt thì 4m^2-16>0

=>m>2 hoặc m<-2

x1-x2=-2

=>(x1-x2)^2=4

=>(x1+x2)^2-4x1x2=4

=>(2m-2)^2-4(-2m+5)=4

=>4m^2-8m+4+8m-20=4

=>4m^2=20

=>m^2=5

=>m=căn 5 hoặc m=-căn 5