Chứng minh: 4x2-4x+3>0 với mọi giá trị của x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(x^2+6x+9+1\)
=\(\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\)\(\ge\)0 \(\forall\)x
=>\(\left(x-3\right)^2\)+1\(\ge\)1 \(\forall\) x
Vậy A luôn luôn dương với mọi x
B=4\(x^2-4x+1+2\)
=\(\left(2x-1\right)^2+2\)
Vì\(\left(2x-1\right)^2\ge0\forall\) x
=>\(\left(2x-1\right)^2+2\ge2\forall\) x\(\in R\)
Vậy B luôn luôn dương với x thuộc R
Ta có: 4x2-28x+51
=(2x)2-2.2x.7+72+2
=(2x-7)2+2
Ta dễ thấy được rằng (2x-7)2 luôn lớn hơn hoặc bằng 0 với mọi giá trị của x
Do vậy nên (2x-7)2+2 luôn lớn hơn 0 với mọi giá trị của x
Do đó 4x2-28x+51 luôn lớn hơn 0 với mọi giá trị của x
TA CÓ
4X2 - 28X +51 bằng [(2X)2 - 2.2X.7 - 72] +2 = (2X-7)2 + 2 >0 VỚI MỌI GIÁ TRỊ CỦA X
VẬY 4X2 - 28X +51 >0 VỚI MỌI GIÁ TRỊ CỦA X
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
biến đổi vế trái:
4x2 -4x +3 = (2x)2 - 2.2x +1 + 2 = (2x-1)2 +2 >0 đpcm
a)\(\frac{-1}{4x+2}< 0\)
\(\Leftrightarrow4x+2>0\)
\(\Leftrightarrow4x>-2\)
\(\Leftrightarrow x>\frac{-1}{2}\)
Vậy ...
b)\(\frac{-x^2-2x-3}{x^2+1}\)
Ta có: \(-x^2-2x-3=-\left(x+1\right)^2-2\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2-2\le-2< 0;\forall x\)
Lại có \(x^2\ge0;\forall x\)
\(\Rightarrow x^2+1\ge1>0;\forall x\)
\(\Rightarrow\frac{-x^2-2x-3}{x^2+1}< 0;\forall x\)
hừm
4x2-4x+3
=4x2-4x+1+2
=((2x)2-2.2.x.1+1)+2
=(2x-1)2+2
Ta có: (2x-1)2 ≥ 0 ∀x
⇒(2x-1)2+2 ≥ 2 >0 ∀x
Vậy 4x2-4x+3>0 ∀x