Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=2
B = x 6 – 2 x 4 + x 3 + x 2 – x ⇔ B = x 6 – x 4 – x 4 + x 3 + x 2 – x ⇔ B = ( x 6 – x 4 ) – ( x 4 – x 2 ) + ( x 3 – x ) ⇔ B = x 3 ( x 3 – x ) – x ( x 3 – x ) + ( x 3 – x ) ⇔ B = ( x 3 – x + 1 ) ( x 3 – x )
Tại x 3 – x = 6, ta có B = (6 + 1).6 = 7.6 = 42
Đáp án cần chọn là: B
B = x 6 – 2 x 4 + x 3 + x 2 – x ⇔ B = x 6 – x 4 – x 4 + x 3 + x 2 – x ⇔ B = ( x 6 – x 4 ) – ( x 4 – x 2 ) + ( x 3 – x ) ⇔ B = x 3 ( x 3 – x ) – x ( x 3 – x ) + ( x 3 – x ) ⇔ B = ( x 3 – x + 1 ) ( x 3 – x )
Tại x 3 – x = 6, ta có B = (6 + 1).6 = 7.6 = 42
Đáp án cần chọn là: B
2:
a: =>(x-9)(x-1)=0
=>x=9 hoặc x=1
b: =>(x+4)(x^2-4x+16)+(x+4)(x-16)=0
=>(x+4)(x^2-4x+16+x-16)=0
=>(x+4)(x^2-3x)=0
=>x(x-3)(x+4)=0
=>x=0;x=3;x=-4
bài 2 :
a: =>(x-9)(x-1)=0
=>x=9 hoặc x=1
b: =>(x+4)(x^2-4x+16)+(x+4)(x-16)=0
=>(x+4)(x^2-4x+16+x-16)=0
=>(x+4)(x^2-3x)=0
=>x(x-3)(x+4)=0
=>x=0;x=3;x=-4
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~