Có 2 đề kiểm tra toán để chọn học sinh giỏi được phát cho 10 học sinh khối 11 và 10 học sinh khối 12. Có bao nhiêu cách sắp xếp 20 học sinh trên vào 1 phòng thicos 5 dãy ghế sao cho hai em ngồi cạnh nhau có đề khác nhau, còn các em ngồi nối đuôi nhau có cùng một đề ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do mỗi học sinh lớp 12 ngồi giữa hai học sinh khối 11 nên ở vị trí đầu tiên và cuối cùng của dãy ghế sẽ là học sinh khối 11.
Bước 1: Xếp 6 học sinh lớp 11 thành một hàng ngang, có 6! cách.
Bước 2: giữa 6 bạn học sinh lớp 11 có 5 khoảng trống, chọn 3 khoảng trống trong 5 khoảng trống để xếp các bạn lớp 12, có cách( có liên quan đến thứ tự).
Theo quy tắc nhân có cách xếp thỏa yêu cầu.
Chọn C.
Đáp án là D
Số cách chọn 6 học sinh bất kì trong 12 học sinh là: C 12 6 cách.
Số cách chọn 6 học sinh mà trong đó không có học sinh khối 10 ( hay 6 học sinh từ khối 11 và 12) là: C 7 6 cách.
Số cách chọn 6 học sinh mà trong đó không có học sinh khối 11 (hay 6 học sinh từ khối 10 và 12) là: C 8 6 cách.
Số cách chọn 6 học sinh mà trong đó không có học sinh khối 12 (hay 6 học sinh từ khối 10 và 11) là: C 9 6 cách.
Vậy có C 12 6 - ( C 7 6 + C 8 6 + C 9 6 ) = 805 cách chọn thỏa mãn yêu cầu bài toán.
Đáp án C
Xếp 3 khối có 3! cách.
Xếp 5 học sinh lớp 10 có 5! cách.
Xếp 6 học sinh lớp 11 có 6! cách.
Xếp 7 học sinh lớp 12 có 7! cách.
Vậy có cách xếp.
Đáp án C
Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản
Lời giải:
Ta đi làm phần đối của giả thiết, tức là chọn 6 học sinh giỏi chỉ lấy từ một khối hoặc hai khối.
Chọn 6 học sinh giỏi trong 15 học sinh giỏi của 3 khối có C 15 6 = 5005 cách
Số cách chọn 6 học sinh giỏi bằng cách chỉ lấy từ 1 khối 12 là C 6 6 = 1
Chọn 6 học sinh giỏi trong 10 học sinh giỏi của 2 khối 12 và 11 có C 10 6 = 210 cách, tuy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 210 - 1 = 209 cách
Chọn 6 học sinh giỏi trong 11 học sinh giỏi của 2 khối 12 và 10 có C 11 6 = 462 cách, uy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 462 - 1 = 461 cách.
Chọn 6 học sinh giỏi trong 9 học sinh giỏi của 2 khối 11 và 10 có C 9 6 = 84 cách
Suy ra số cách chọn thỏa mãn yêu cầu bài toán là 5005 - 209 - 461 - 84 - 1 = 4250 cách
Đáp án C
Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản
Lời giải:
Ta đi làm phần đối của giả thiết, tức là chọn 6 học sinh giỏi chỉ lấy từ một khối hoặc hai khối.
Chọn 6 học sinh giỏi trong 15 học sinh giỏi của 3 khối có C 15 6 = 5005 cách
Số cách chọn 6 học sinh giỏi bằng cách chỉ lấy từ 1 khối 12 là C 6 6 = 1
Chọn 6 học sinh giỏi trong 10 học sinh giỏi của 2 khối 12 và 11 có C 10 6 = 210 cách, tuy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 210 – 1 = 2019 cách
Chọn 6 học sinh giỏi trong 11 học sinh giỏi của 2 khối 12 và 10 có C 11 6 = 462 cách, uy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 462 – 1 = 461 cách.
Chọn 6 học sinh giỏi trong 9 học sinh giỏi của 2 khối 11 và 10 có C 9 6 = 84 cách
Suy ra số cách chọn thỏa mãn yêu cầu bài toán là 5005 – 209 – 461 – 84 – 1 = 4250 cách
Chọn 3 học sinh lớp 12 có cách
Chọn 1 học sinh lớp 11 có cách
Chọn 1 học sinh lớp 10 có cách.
Do đó có cách chọn.
Chọn B.
Đáp án B.
Số cách chọn 5 em học sinh từ 8 học sinh trên là cách
- Để chọn 5 em thỏa mãn bài ra, ta xét các trường hợp sau
+) 1 nam khối 11, 1 nữ khối 12 và 3 nam khối 12 có cách
+) 1 nam khối 11, 2 nữ khối 12 và 2 nam khối 12 có cách
+) 2 nam khối 11, 1 nữ khối 12 và 2 nam khối 12 có cách
+) 2 nam khối 11, 2 nữ khối 12 và 1 nam khối 12 có cách
- Số cách chọn 5 em thỏa mãn bài ra là:
cách
Vậy xác suất cần tính là:
ta có 2 TH sau:
*TH 1:hs khối 11 ngồi ở đầu bàn bên trái,tiếp đến là hs khối 12⇒10!.10!
*TH 2:hs khối 12 ngồi ở bàn đầu bên trái tiếp đến là hs khối 11⇒10!.10!
⇒2.10! x 10!=26336378880000
5 dãy ghế mà bạn, nghĩa là mỗi dãy chỉ có 4 người thôi