K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Số cách xếp ngẫu nhiên 12 học sinh thành hàng ngang là 12! cách.

Ta tìm số cách xếp thoả mãn:

Xếp hai bạn An và Bình cạnh nhau có 2! cách, gọi nhóm này là X;

Xếp 4 bạn lớp C còn lại cùng với X có 5! cách;

Lúc này có 4 vị trí (xen giữa các bạn lớp C còn lại và X) để xếp 3 bạn lớp B vào có A34A43cách;

Còn lại 3 vị trí để các bạn lớp A có thể xếp vào (1 vị trí xen giữa và ở hai đầu) có 3.3.3 cách.

Vậy có tất cả 2 ! 5 ! A 4 3 27  cách xếp thoả mãn.

Xác suất cần tính bằng  2 ! 5 ! A 4 3 27 12 ! = 1 3080

Chọn đáp án D.

5 tháng 8 2019

Đáp án D

28 tháng 2 2017

Đáp án C

Phương pháp:

Sử dụng quy tắc vách ngăn.

Cách giải:

Xếp 2 học sinh lớp A có 2! cách xếp, khi đó tạo ra 3 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ nhất vào 1 trong 2 khoảng trống không ở giữa 2 bạn lớp A có 2 cách, khi đó tạo ra 4 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ 2 vào 1 trong 3 khoảng trống không ở giữa 2 bạn lớp A có 3 cách, khi đó tạo ra 5 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ 3 vào 1 trong 4 khoảng trống không ở giữa 2 bạn lớp A có 4 cách, khi đó tạo ra 6 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp C thứ nhất vào 1 trong 6 khoảng trống (kể cả khoảng trống giữa 2 bạn lớp A) có 6 cách, khi đó tạo ra 7 khoảng trống.

Cứ như vậy ta có :

Xếp bạn lớp C thứ hai có 7 cách.

Xếp bạn lớp C thứ ba có 8 cách.

Xếp bạn lớp C thứ tư có 9 cách.

Vậy số cách xếp 9 học sinh trên thỏa mãn yêu cầu là 2!.2.3.4.5.6.7.8.9 = 145152 cách.

18 tháng 1 2019

Đáp án C

Gọi k là số học sinh lớp C ở giữa hai học sinh lớp A với k = 0 ; 1 ; 2 ; 3 ; 4  

Chọn 2 học sinh lớp A xếp 2 đầu có 2 ! cách. Chọn k học sinh lớp C xếp vào giữa 2 học sinh lớp A có A 4 k   cách. Vậy có 2 ! . A 4 k cách xếp để được hàng  A C ... C   A ⏟ k

Coi cụm A C ... C   A ⏟ k là 1 vị trí cùng với 9 − k + 2 học sinh còn lại thành 8 − k vị trí.

Xếp hàng cho các vị trí này có 8 − k !  cách. Vậy với mỗi k như trên có 2 ! . A 4 k . 8 − k ! cách xếp.

Vậy tổng số cách xếp thỏa mãn đề bài là ∑ k = 0 4 2 ! . A 4 k . 8 − k ! = 145152 cách.

 

18 tháng 1 2019

Xếp 2 học sinh lớp A có 2! cách xếp, khi đó tạo ra 3 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ nhất vào 1 trong 2 khoảng trống không ở giữa 2 bạn lớp A có 2 cách, khi đó tạo ra 4 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ 2 vào 1 trong 3 khoảng trống không ở giữa 2 bạn lớp A có 3 cách, khi đó tạo ra 5 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ 3 vào 1 trong 4 khoảng trống không ở giữa 2 bạn lớp A có 4 cách, khi đó tạo ra 6 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp C thứ nhất vào 1 trong 6 khoảng trống (kể cả khoảng trống giữa 2 bạn lớp A) có 6 cách, khi đó tạo ra 7 khoảng trống.

Cứ như vậy ta có :

Xếp bạn lớp C thứ hai có 7 cách.

Xếp bạn lớp C thứ ba có 8 cách.

Xếp bạn lớp C thứ tư có 9 cách.

Vậy số cách xếp 9 học sinh trên thỏa mãn yêu cầu là 2!.2.3.4.5.6.7.8.9=145152 cách.

Chọn đáp án C.

4 tháng 12 2017

29 tháng 4 2019

Coi 5 bạn của cả 12A và B vào một lớp 12X nào đó. Do số lượng ở đề nên ta có hai trường hợp

TH1. Các bạn 12C và 12X xen kẽ nhau. Có 5!.5!.2 = 28800 cách

TH2. Có hai bạn lớp 12A và 12B dính với nhau. Ta có như 12X chỉ có 4 bạn. rồi lại làm xen kẽ. Chọn 2 bạn dính nhau và hoán vị 2 bạn đó có 12 cách, 5 bạn 12C tạo ra 4 khe để 4 bạn của lớp 12X đứng vào nên có tất cả là 12.5!.4! = 34560

Đáp án cần chọn là A

22 tháng 2 2018

Đáp án A.

Kí hiệu học sinh các lớp 12A, 12B,12C

lần lượt là A,B,C.

Ta sẽ xếp 5 học sinh của lớp 12C trước,

khi đó xét các trường hợp sau:

TH1: CxCxCxCxCx với x thể hiện là

ghế trống.

Khi đó, số cách xếp là 5!5! cách.

TH2: xCxCxCxCxC giống với TH1

⇒  có 5!5! cách xếp.

TH3: CxxCxCxCxC với xx là hai ghế

trống liền nhau.

Chọn 1 học sinh lớp 12A và 1 học sinh

lớp 12B vào 2 ghế trống ⇒ 2.3.2! cách

xếp. Ba ghế trống còn lại ta sẽ xếp 3 học

sinh còn lại của 2 lớp 12A-12B

⇒  3! cách xếp.

Do đó, TH3 có 2.3.2!.3!.5! cách xếp. 

Ba TH4. CxCxxCxCxC.

TH5. CxCxCxxCxC.

TH6. CxCxCxCxCxx tương tự TH3.

Vậy có tất cả 2.5!5!+4.2.3.2!.3!.5!=63360

cách xếp cho các học sinh.

Suy ra xác suất cần tính là  P = 63360 10 ! = 11 630 .

1 tháng 11 2018

Đáp án A

Xếp 10 học sinh thành hàng ngang: 10!

Xếp 5 học sinh của lớp 12C: 5!

Giữa 5 học sinh của lớp 12C có 6 chỗ trống. do hai học sinh của lớp 12C không thể đứng gần nhau nên buộc phải có 4 người

TH1: Có 1 học sinh A hoặc B ở phía ngoài, 4 học sinh còn lại xếp vào 4 chỗ trống ở giữa các bạn C, có 2.5!

TH2: có 1 cặp học sinh A và B vào 1 chỗ trống, 3 học sinh còn lại xếp vào 3 vị trí còn lại, có 2.3.2.4.3!