Cho đa thức
f(x)=x^6 - 2012x^5 + 2012x^4 -2012x^3 + 2012x^2 - 2012x + 2017
f(2011) =f(2011)= .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Thay \(2012=x+1\) vào biểu thức ta có:
\(\Rightarrow B=x^{2011}-\left(x+1\right).x^{2010}+\left(x+1\right).x^{2009}-...-\left(x+1\right).x^2+\left(x+1\right).x-1\)
\(=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^2+x^2+x-1\)
\(=x-1\)
\(\Rightarrow B=2011-1=2010\)
Vậy \(B=2010\)
\(x=2011\Rightarrow2012=x+1\)
\(\Rightarrow M\left(2011\right)=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+1\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+1\)
\(=-x+1=-2011+1=-2010\)
Với x = 2011 => x + 1 = 2012
=> A = x10 - ( x + 1 )x9 + ( x + 1)x8 - ( x+ 1)x7 + ( x + 1 )x6 - ( x + 1 )x5+ ( x + 1 )x4 - ( x + 1 )x3 + ( x + 1)x2 - ( x + 1 )x + 2012
= x10 - x10 - x9 + x9 + x8 - x8 - x7 + x7+ x6- x6 - x5 + x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + 2012
= -x + 2012
Thay x=2011 vào ta được: ( - 2011 ) + 2012 = 1
x=2011 nên x+1=2012
\(P\left(x\right)=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+x+1\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1=1\)
Bài làm:
Vì x=2011 => x+1=2012(*)
Thay (*) vào f(x) ta được:
f(2011) = x6 - (x+1)x5 + (x+1)x4 - (x+1)x3 + (x+1)x2 - (x+1)x + 2017
f(2011) = x6 - x5 - x4 + x3 + x2 - x2 - x +2017
f(2011) = -x +2017
f(2011) = -2011 + 2017
f(2011) = 6
Học tốt!!!!