Cho tam giác ABC vuông tại A, có AB > AC. Trên tia đối của tia CA lấy điểm D
\nsao cho C là trung điểm của đoạn thẳng AD. Qua C dựng đường vuông góc với AD cắt
\ncạnh BD tại E.
\na) Chứng minh tam giác AED là tam giác cân.
\nb) Chứng minh AE là trung tuyến của tam giác ABD.
\nc) Phân giác góc BEA cắt cạnh AB tại F. Gọi G là giao điểm của AE và BC. Chứng minh
\nba điểm D, G, F thẳng hàng.Cho tam giác ABC vuông tại A, có AB > AC. Trên tia đối của tia CA lấy điểm D
\nsao cho C là trung điểm của đoạn thẳng AD. Qua C dựng đường vuông góc với AD cắt
\ncạnh BD tại E.
\na) Chứng minh tam giác AED là tam giác cân.
\nb) Chứng minh AE là trung tuyến của tam giác ABD.
\nc) Phân giác góc BEA cắt cạnh AB tại F. Gọi G là giao điểm của AE và BC. Chứng minh
\nba điểm D, G, F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét tam giác abc và tam giác dbe có:
\(\widehat{b}\): góc chung
ab = bd (gt)
\(\widehat{bac}\)= \(\widehat{bde}\)( = 90 độ )
Vậy: tam giác abc = tam giac dbe
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Đề sai rồi bạn
a: BC=15cm
Xét ΔABC có AC<AB<BC
nên \(\widehat{B}< \widehat{C}< \widehat{A}\)
b: Xét ΔEAD có
EC là đường cao
EC là đường trung tuyến
DO đó: ΔEAD cân tại E
c: Xét ΔDAB có
C là trung điểm của AD
CE//AB
Do đó: E là trung điểm của BD
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
b) Ta có: EC⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: EC//AB(Định lí 1 từ vuông góc tới song song)
Xét ΔBAD có
C là trung điểm của AD(gt)
CE//AB(cmt)
Do đó: E là trung điểm của BD(Định lí 1 đường trung bình của tam giác)
Ta có: ΔABD vuông tại A(gt)
mà AE là đường trung tuyến ứng với cạnh huyền BD(E là trung điểm của BD)
nên \(AE=\dfrac{1}{2}BD\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(BE=\dfrac{1}{2}BD\)(E là trung điểm của BD)
nên AE=BE
Xét ΔAEB có EA=EB(cmt)
nên ΔAEB cân tại E(Định nghĩa tam giác cân)