Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)
Bạn có thể tự vẽ hình chứ ? Tại hình hơi rối nên mình lười vẽ =)))
a) Xét ∆ABD và ∆CED có :
DA = DC (D là trung điểm của AC)
∠ADB = ∠CDE (2 góc đối đỉnh)
DB = DE (GT)
=> ∆ABD = ∆CED (c.g.c)
=> ∠ABD = ∠CED (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CE (DHNB)
b) Ta có : AF ⊥ BD (GT)
Mà CG ⊥ DE (GT)
=> AF // CG (Tính chất)
=> ∠DAF = ∠DCG (2 góc so le trong) (1)
Xét ∆ADF và ∆CDG có :
∠DAF = ∠DCG (Theo (1))
DA = DC (D là trung điểm của AC)
∠ADF = ∠CDG (2 góc đối đỉnh)
=> ∆ADF = ∆CDG (g.c.g)
=> DF = DG (2 cạnh tương ứng)
c) Mình cũng có chứng minh thẳng hàng mấy lần rồi nhưng nhìn hình thì mình không tìm được các yếu tố có thể chứng minh nên bạn nhờ ai khác nhé.
Em tham khảo tại đây nhé.
Câu hỏi của Cả cuộc đời này tôi sẽ mãi yêu một người - Toán lớp 7 - Học toán với OnlineMath
a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
b) Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)
=> AB // CD (đpcm)
Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
b) Ta có: EC⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: EC//AB(Định lí 1 từ vuông góc tới song song)
Xét ΔBAD có
C là trung điểm của AD(gt)
CE//AB(cmt)
Do đó: E là trung điểm của BD(Định lí 1 đường trung bình của tam giác)
Ta có: ΔABD vuông tại A(gt)
mà AE là đường trung tuyến ứng với cạnh huyền BD(E là trung điểm của BD)
nên \(AE=\dfrac{1}{2}BD\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(BE=\dfrac{1}{2}BD\)(E là trung điểm của BD)
nên AE=BE
Xét ΔAEB có EA=EB(cmt)
nên ΔAEB cân tại E(Định nghĩa tam giác cân)