\(2\sqrt{28}\)+\(\sqrt[3]{-27}\)-\(\frac{\sqrt[3]{175}}{\sqrt{7}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
22) \(\frac{1}{\sqrt{5}+\sqrt{2}}+\frac{1}{\sqrt{5}-\sqrt{2}}\)
\(=\frac{\left(\sqrt{5}-\sqrt{2}\right)+\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}\)
\(=\frac{2\sqrt{5}}{\sqrt{5^2}-\sqrt{2^2}}\)
\(=\frac{2\sqrt{5}}{5-2}=\frac{2\sqrt{5}}{3}\)
a) \(\sqrt{200}+2\sqrt{108}-\sqrt{98}+\frac{1}{3}\sqrt{\frac{81}{3}}-3\sqrt{75}\)
\(=10\sqrt{2}+12\sqrt{3}-7\sqrt{2}+\sqrt{3}-15\sqrt{3}\)
\(=3\sqrt{2}-2\sqrt{3}\)
b)\(\left(21\sqrt{\frac{1}{7}}+\frac{1}{2}\sqrt{112}-\frac{14}{3}\sqrt{\frac{9}{7}}+7\right):3\sqrt{7}\)
\(=\left(3\sqrt{7}+2\sqrt{7}-2\sqrt{7}+7\right):3\sqrt{7}\)
\(=\frac{\sqrt{7}\left(3+\sqrt{7}\right)}{3\sqrt{7}}=\frac{\sqrt{7}+3}{3}\)
c)\(\left(\sqrt{27}-\sqrt{125}+\sqrt{45}+\sqrt{12}\right)\left(\sqrt{75}+\sqrt{20}\right)\)
\(=\left(3\sqrt{3}-5\sqrt{5}+3\sqrt{5}+2\sqrt{3}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)
\(=\left(5\sqrt{3}-2\sqrt{5}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)
\(=75-20=55\)
d)\(\left(\frac{3}{\sqrt{6}-3}-\frac{3}{\sqrt{6}+3}\right).\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\frac{\sqrt{28-6\sqrt{3}}}{1}\)
\(=\frac{3\left(\sqrt{6}+3\right)-3\left(\sqrt{6}-3\right)}{-3}.\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\sqrt{\left(3\sqrt{3}-1\right)^2}\)
\(=\frac{-6\left(3-\sqrt{3}\right)}{2-2\sqrt{3}}-\left(3\sqrt{3}-1\right)\left(do3\sqrt{3}>1\right)\)
\(=\frac{6\sqrt{3}-18}{2-2\sqrt{3}}-\frac{8\sqrt{3}-20}{2-2\sqrt{3}}\)
\(=\frac{6\sqrt{3}-18-8\sqrt{3}+20}{2-2\sqrt{3}}=\frac{2-2\sqrt{3}}{2-2\sqrt{3}}=1\)
\(A=\sqrt{9.7}-2\sqrt{25.7}+\sqrt{9.7.4}-\frac{1}{7}\sqrt{4.7}\)
\(=3\sqrt{7}-10\sqrt{7}+6\sqrt{7}-\frac{2}{7}\sqrt{7}\)
\(=\frac{-9}{7}\sqrt{7}\)
Nếu đúng tk nhé
a = \(\sqrt{63}-2\sqrt{175}+\sqrt{252}-\frac{1}{7}\sqrt{28}\)
= \(\sqrt{\frac{4}{7}}\left(1,5-5+3-1\right)\)
= \(-1,5\sqrt{\frac{4}{7}}\)
* \(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\frac{6\sqrt{2}-4}{3-\sqrt{2}}\)\(=\frac{\left(\sqrt{8}-\sqrt{7}\right)}{\left(\sqrt{8}+\sqrt{7}\right)\left(\sqrt{8}-\sqrt{7}\right)}+\sqrt{25.7}-\frac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)
\(=\sqrt{8}-\sqrt{7}+5\sqrt{7}-2\sqrt{2}=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}=4\sqrt{7}\)
** \(\frac{\sqrt{6-\sqrt{11}}}{\sqrt{22}-\sqrt{2}}+\frac{6}{\sqrt{2}}-\frac{3}{\sqrt{2}+1}\)\(=\frac{\sqrt{2}\sqrt{6-\sqrt{11}}}{\sqrt{2}\left(\sqrt{22}-\sqrt{2}\right)}+\frac{6\sqrt{2}}{2}-\frac{3\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)
\(=\frac{\sqrt{12-2\sqrt{11}}}{2\sqrt{11}-2}+3\sqrt{2}-\frac{3\sqrt{2}-3}{1}\)\(=\frac{\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}+1^2}}{2\left(\sqrt{11}-1\right)}+3\sqrt{2}-3\sqrt{2}+3\)
\(=\frac{\sqrt{11}-1}{2\left(\sqrt{11}-1\right)}+3=\frac{1}{2}+3=\frac{7}{2}\).
con kìa