Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+.......+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n}-1\right)}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+........+\frac{\sqrt{n}-\sqrt{n-1}}{n-\left(n-1\right)}\)
\(=\sqrt{2}-\sqrt{1}+...........+\sqrt{n}-\sqrt{n-1}\)
\(=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)
bài B tương tự
Thế muốn giải thích thì liệt kê đau đầu =(
\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)
\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)
Đây là TH là số hữu tỉ còn lại.....
\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)
\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)
Thử nào:) Thứ tự khá lộn xộn, thông cảm nha. Quen nhìn từ trái qua rồi
a) ĐK: x>=0 bình phương hai vế được \(x=49\) (TM)
c)ĐK: \(x\ge-\frac{1}{6}\), pt tương đương \(\sqrt{3x+\frac{1}{2}}=\frac{3}{2}\Leftrightarrow3x+\frac{1}{2}=\frac{9}{4}\Leftrightarrow x=\frac{7}{12}\)(TM)
e) ĐK: x>=-1. PT \(\Leftrightarrow x+1=11^2\Leftrightarrow x=120\) (TM)
b) ĐK: x>=3. PT \(\Leftrightarrow x-3=13^2\Leftrightarrow x=172\)(TM)
d) ĐK \(x\ge-\frac{4}{3}\). PT \(\Leftrightarrow3x+4=25\Leftrightarrow\Leftrightarrow x=7\) (TM)
Vậy...
con kìa