\(A=\sqrt{63}-2\sqrt{175}+\sqrt{252}-\frac{1}{7}\sqrt{28}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

\(A=\sqrt{9.7}-2\sqrt{25.7}+\sqrt{9.7.4}-\frac{1}{7}\sqrt{4.7}\)

\(=3\sqrt{7}-10\sqrt{7}+6\sqrt{7}-\frac{2}{7}\sqrt{7}\)

\(=\frac{-9}{7}\sqrt{7}\)

Nếu đúng tk nhé

19 tháng 6 2017

a = \(\sqrt{63}-2\sqrt{175}+\sqrt{252}-\frac{1}{7}\sqrt{28}\)

  = \(\sqrt{\frac{4}{7}}\left(1,5-5+3-1\right)\)

 =  \(-1,5\sqrt{\frac{4}{7}}\)

19 tháng 6 2017

\(A=...\)

\(=3\sqrt{7}-2.5\sqrt{7}+6\sqrt{7}-\dfrac{1}{7}.2\sqrt{7}\)

\(=\left(3-2.5+6-\dfrac{1}{7}.2\right)\sqrt{7}\)
\(=-\dfrac{9\sqrt{7}}{7}\)

17 tháng 7 2018

\(a.6\sqrt{3}-2\sqrt{12}+5\sqrt{300}-7\sqrt{243}=6\sqrt{3}-4\sqrt{3}+50\sqrt{3}-63\sqrt{3}=\left(6-4+50-63\right)\sqrt{3}=-11\sqrt{3}\)

\(b.\sqrt{28}+3\sqrt{63}-6\sqrt{175}-\dfrac{1}{5}\sqrt{252}=2\sqrt{7}+9\sqrt{7}-30\sqrt{7}-\dfrac{6}{5}\sqrt{7}=\left(2+9-30-\dfrac{6}{5}\right)\sqrt{7}=-20,2\sqrt{7}\)\(c.5\sqrt{44}-2\sqrt{275}-3\sqrt{176}=10\sqrt{11}-10\sqrt{11}-12\sqrt{11}=-12\sqrt{11}\)

\(d.2\sqrt{75}-\sqrt{12}+2\sqrt{147}-7\sqrt{103}=10\sqrt{3}-2\sqrt{3}+14\sqrt{3}-7\sqrt{103}=22\sqrt{3}-7\sqrt{103}\)

17 tháng 7 2018

\(a.6\sqrt{3}-2\sqrt{12}+5\sqrt{300}-7\sqrt{243}=6\sqrt{3}-4\sqrt{3}+50\sqrt{3}-63\sqrt{3}=-11\sqrt{3}\)

\(b.\sqrt{28}+3\sqrt{63}-6\sqrt{175}-\dfrac{1}{5}\sqrt{252}=2\sqrt{7}+9\sqrt{7}-30\sqrt{7}-\dfrac{6}{5}\sqrt{7}=-\dfrac{101}{5}\sqrt{7}\)

\(c.5\sqrt{44}-2\sqrt{275}-3\sqrt{176}=20\sqrt{11}-10\sqrt{11}-12\sqrt{11}=-2\sqrt{11}\)

\(d.2\sqrt{75}-\sqrt{12}+2\sqrt{147}-7\sqrt{103}=10\sqrt{3}-2\sqrt{3}+14\sqrt{3}-7\sqrt{103}=22\sqrt{3}-7\sqrt{103}\)

10 tháng 8 2015

\(=\frac{\sqrt{8}-\sqrt{7}}{\left(\sqrt{8}-\sqrt{7}\right)\left(\sqrt{8}+\sqrt{7}\right)}+5\sqrt{7}-2\sqrt{2}\)

\(=\frac{2\sqrt{2}-\sqrt{7}}{8-7}+5\sqrt{7}-2\sqrt{2}\)

\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-2\sqrt{2}=4\sqrt{7}\)

NV
24 tháng 10 2019

\(A=4-7+6=3\)

\(B=\sqrt{4.7^2}-2\sqrt{25.7^2}+\sqrt{9.7^2}=2.7-2.5.7+3.7=-35\)

\(C=\sqrt{\left(\sqrt{3}-1\right)^2}.4=4\left(\sqrt{3}-1\right)=4\sqrt{3}-4\)

\(D=\sqrt{\left(2+\sqrt{3}\right)^2}.\sqrt{\left(2-\sqrt{3}\right)^2}=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=4-3=1\)