K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

\(\left(a+b+c+d\right)^2-4\left(ab+bc+cd+da\right)=a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)-4\left(ab+bc+cd+da\right)\)

\(=a^2+b^2+c^2+d^2+2\left(-ab+ac-ad-bc+bd-cd\right)=\left(a-b+c-d\right)^2\ge0\)

=> dpcm

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

CHú bấm nhầm câu rồi hả chú em

7 tháng 5 2017

a) \(a^2+b^2+c^2+d^2=ab+bc+ac+cd.\)

<=>\(2a^2+2b^2+2c^2+2d^2=2ab+2ac+2bc+2cd\)

<=>\(2a^2+2b^2+2c^2+2d^2-2ab-2bc-2ac-2cd=0\)

<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)+\left(d^2-2cd+c^2\right)\)=0

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(d-c\right)^2=0\)

=>a=b=c=d

=> ABCD là hình thoi

12 tháng 9 2017

ý a ko cần giải đâu nha mk ra òi

Dễ thôi

6 tháng 8 2018

Ta có BĐT \(\Leftrightarrow\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Leftrightarrow ab+cd+2\sqrt{abcd}\le ab+ac+bd+dc\)

\(\Leftrightarrow ac+bd\ge2\sqrt{abcd}\) (luôn đúng theo AM-GM)

p/s: mà cái BĐT bn cần chứng minh đó chính là BĐT Bunyakovsky đấy ^.^