\(\in\left[0,1\right]\). CMR \(0\le a+b+c+d-ab-bc-cd-da\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

Ta có: \((1-a)(1-b)(1-c)\geq 0\)

\(\Rightarrow 1-abc+(ab+bc+ca)-(a+b+c)\geq 0\)

\(\Rightarrow 1-(a+b+c)+(ab+bc+ca)\geq 0\)

\(\Rightarrow (a+b+c)-(ab+bc+ca)\leq 1\)

\(a;b;c\in \left [ 0;1 \right ]\) nên \(b^{2}\leq b;c^{3}\leq c\)

\(\Rightarrow a+b^{2}+c^{3}-ab-bc-ca\leq a+b+c-(ab+bc+ca)\leq 1\)

Đẳng thức xảy ra khi \(b=c=1\)\(a=0\)

26 tháng 3 2017

cho a,b,c thuộc [0;1]. cmr $a+b^{2}+c^{3}+ab+bc+ca \leq 1$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

a+b+c+d=0

nên a+b=-(c+d)

\(a^3+b^3+c^3+d^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)

\(=\left[-\left(c+d\right)\right]^3-3ab\cdot\left[-\left(c+d\right)\right]+\left(c+d\right)^3-3cd\left(c+d\right)\)

\(=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(=3\left(c+d\right)\left(ab-cd\right)\)

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Bài 1:

(a)

Vì $a,b,c$ là độ dài ba cạnh tam giác nên theo BĐT tam giác ta có:

\(\left\{\begin{matrix} a+b>c\\ b+c>a\\ c+a>b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c(a+b)>c^2\\ a(b+c)>a^2\\ b(c+a)>b^2\end{matrix}\right.\)

\(\Rightarrow c(a+b)+a(b+c)+b(c+a)> c^2+a^2+b^2\)

\(\Leftrightarrow 2(ab+bc+ac)> a^2+b^2+c^2\)

Ta có đpcm.

(2): Bài này có nhiều cách giải. Nhưng mình xin đưa ra cách làm thuần túy Cô-si nhất.

Đặt

\((a+b-c, b+c-a, c+a-b)=(x,y,z)\Rightarrow (a,b,c)=(\frac{x+z}{2}; \frac{x+y}{2}; \frac{y+z}{2})\)

Khi đó:

\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\)

\(=\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}+\frac{y}{2x}+\frac{z}{2x}\geq 6\sqrt[6]{\frac{1}{2^6}}=3\) (áp dụng BĐT Cô-si)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$

(c):

Theo BĐT tam giác:

\(b+c>a\Rightarrow 2(b+c)> b+c+a\Rightarrow b+c> \frac{a+b+c}{2}\)

\(\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}\)

Hoàn toàn tương tự với những phân thức còn lại và cộng theo vế:

\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Bài 2:

Áp dụng BĐT Cô-si cho các số dương:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^2.b^2.c^2.d^2.ab.cd}=6\sqrt[6]{(abcd)^3}=6\sqrt[6]{1^3}=6\)

Ta có đpcm

Dấu "=" xảy ra khi \(\left\{\begin{matrix} a^2=b^2=c^2=d^2=ab=cd\\ abcd=1\end{matrix}\right.\Rightarrow a=b=c=d=1\)

10 tháng 6 2019

#)Giải :

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)

P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )

22 tháng 6 2020

Đợi t qua thi nhé full.

10 tháng 4 2018


1.b

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung

10 tháng 4 2018

2 . ta có

\(\left(x-y\right)^2\ge0\)

<=> x2-2xy+y2 ≥ 0

<=> x2+4xy-2xy+y2 ≥ 4xy

<=> x2+2xy+y2 ≥ 4xy

<=> (x+y)2 ≥ 4xy

CMTT

(y+z)2 ≥ 4yz

(z+x)2 ≥ 4zx

nhân các vế của bđt ta có

[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2

<=> (x+y)(y+z)(z+x) ≥ 8xyz