Cho A = 3^1 + 3^2 + 3^3 + .....+ 3^2019. Tìm x để 2A + 3 = 3^x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2019}}\)(1)
=> 3A = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)(2)
Lấy (2) trừ (1) theo vế ta có :
3A - A = \(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2019}}\right)\)
2A = \(1-\frac{1}{3^{2019}}\)
Khi đó : \(\left(2A+\frac{1}{3^{2019}}\right).x=2\)
\(\Leftrightarrow\left(1-\frac{1}{3^{2019}}+\frac{1}{3^{2019}}\right).x=2\)
\(\Rightarrow x=2\)
\(3A=3^2+3^3+...+3^{2020}\)
\(=>3A-A=3^{2020}-3^1\)
\(=>2A=3^{2020}-3\)
\(=>A=\frac{3^{2020}-3}{2}\)
Ta cs :\(2A+3=3^x\)
\(=>3^{2020}-3+3=3^x\)
\(=>3^{2020}=3^x\)
\(=>x=2020\)
Vậy ...
3A=3^2+3^3+...+3^2007
=>3a-A=(3^2+3^3+...+3^2007)-(3^1+3^2+...+3^2006)
=>2A=3^2007-3^1=3^2007-3
=>2A+3=3^2007-3+3=3^2007=3^x
=>x=2007
câu 1:
f(-3) = 7
=> f(-3) = (a + 2) . (-3) + 2a + 5 = 7
=> -3a - 6 + 2a + 5 = 7
=> -1 - a = 7
=> -1 - 7 = a
=> a = -8
\(A=3+3^2+3^3+...+3^{2006}\)
\(\Leftrightarrow3A=3\left(3+3^2+3^3+....+3^{2006}\right)\)
\(\Leftrightarrow3A=3^2+3^3+3^4+....+3^{2007}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2007}\right)-\left(3+3^2+3^3+...+3^{2006}\right)\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
Ta có \(2A=3^{2007}-3\)
=> 2A+3=\(3^{2007}-3+3=3^{2007}\)
=> x=2007
a)
Ta có 3A=\(3^2+3^3+3^4+...+3^{2017}\)
3A-A=\(\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)
2A=\(3^{2017}-3\)
A=\(\frac{3^{2017}-3}{2}\)
b)
A=\(\frac{3^{2017}-3}{2}\)
2A=\(3^{2017}-3\)
2A+3=\(3^{2017}-3+3=3^{2017}\)
=>x=2017
\(A=3^1+3^2+3^3+...+3^{2019}\)
\(3A=3^2+3^3+3^4+...+3^{2020}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3^1+3^2+3^3+...+3^{2019}\right)\)
\(2A=3^{2020}-3\)
\(2A+3=3^{2020}\)
suy ra \(x=2020\).