K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

Ta có 3(a2 + b2 + c2) = (a + b + c)2 

<=> 3a2 + 3b2 + 3c2 = a2 + b2 + c2 + 2ab + 2bc + 2ca 

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)(đpcm)

23 tháng 10 2021

carm own anh

2 tháng 7 2021

\(b)\)

\(4n-3⋮3n-2\)

\(\Leftrightarrow3\left(4n-3\right)⋮3n-2\)

\(\Leftrightarrow12n-9⋮3n-2\)

\(\Leftrightarrow\left(12n-8\right)-1⋮3n-2\)

\(\Leftrightarrow4\left(3n-2\right)-1⋮3n-2\)

\(\Leftrightarrow1⋮3n-2\)

\(\Leftrightarrow3n-2\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow3n\in\left\{1;3\right\}\)

Mà: \(3n⋮3\)

\(\Leftrightarrow3n=3\)

\(\Leftrightarrow n=1\)

17 tháng 11 2019

Bài này chỉ đơn giản là Cô si ngược dấu, mà thêm tên t vào làm cái qq gì-_-

17 tháng 11 2019

tth_new bác này ở trình khác r.

\(\frac{a}{b^2+1}=\frac{a\left(b^2+1\right)-ab^2}{b+1}=a-\frac{ab^2}{b+1}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự 

\(\frac{b}{c^2+1}\ge b-\frac{bc}{2};\frac{c}{a^2+1}\ge c-\frac{ca}{2}\)

Cộng lại \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}\)

Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

Khi đó \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{3}{2}=\frac{3}{2}\left(đpcm\right)\)

Dấu "=" xảy ra tại a=b=c=1

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D