Câu 10:
Cho vuông tại D có DM là đường cao. Biết DM = 12cm, EM = 9cm.Tính MF.
A.MF = 10cm
B.MF =16cm
C.MF = 12cm
D.MF = 20cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔDEF vuông tại D
=>\(DE^2+DF^2+EF^2\)
=>\(EF^2=9^2+12^2=225\)
=>\(EF=\sqrt{225}=15\left(cm\right)\)
Ta có; ΔDEF vuông tại D
mà DM là đường trung tuyến
nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)
b: Xét tứ giác DNMK có
\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)
=>DNMK là hình chữ nhật
c: Xét ΔDEF có MN//DF
nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)
=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)
mà \(MN=\dfrac{1}{2}MH\)
nên MH=DF
Ta có: MN//DF
N\(\in\)MH
Do đó: MH//DF
Xét tứ giác DHMF có
MH//DF
MH=DF
Do đó: DHMF là hình bình hành
=>DM cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của DM
nên O là trung điểm của HF
=>H,O,F thẳng hàng
Áp dụng hệ thức lượng trong tam giác DEF vuông tại D có đường cao DM:
\(DM^2=EM.MF\Rightarrow DM=\sqrt{EM.MF}=\sqrt{2.8}=4\left(cm\right)\)
\(DE^2=EM.EF=2\left(2+8\right)=20\)
\(\Rightarrow DE=2\sqrt{5}\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}DM^2=ME\cdot MF=16\\DE^2=ME\cdot EF=2\left(2+8\right)=20\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}DM=4\left(cm\right)\\DE=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
=>BA=BM và DA=DM
b: BD=căn 16^2+12^2=20cm
c: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBI chung
=>ΔBMI=ΔBAC
=>BI=BC
=>ΔBIC cân tại B
Theo định lý Pi-ta-go thì \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác ta có:
\(BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)
\(BH=\frac{12^2}{13}=\frac{144}{13}\left(cm\right)\)
a) Xét tam giác DEF vuông tại D có đường cao DI ta có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)
\(\Rightarrow DI^2=\dfrac{DE^2DF^2}{DE^2+DF^2}\)
\(\Rightarrow DI^2=\dfrac{15^2\cdot20^2}{15^2+20^2}=144\)
\(\Rightarrow DI=12\left(cm\right)\)
b) Xét tam giác DEF vuông tại D có đường cao DI áp dụng Py-ta-go ta có:
\(DF^2=EF^2-DE^2\)
\(\Rightarrow DF^2=15^2-12^2=81\)
\(\Rightarrow DF=9\left(cm\right)\)
Ta có: \(DI=\sqrt{\dfrac{DF^2DE^2}{DF^2+DE^2}}\)
\(\Rightarrow DI=\sqrt{\dfrac{9^2\cdot12^2}{9^2+12^2}}=\dfrac{108}{15}\left(cm\right)\)
Xét tam giác ABC vuông tại A ta có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}BH\cdot BC=AB^2\\HC\cdot BC=AC^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7,2\left(cm\right)\\HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12,8\left(cm\right)\end{matrix}\right.\)
Bài 1. Tam giác DEF vuông tại D, đường cao DK.
1) Biết DE = 12cm, EF = 20cm. Tính EK, FK, DK,DF.
2) Chứng minh : \(\dfrac{DE^2}{EK}=\dfrac{DF^2}{FK}\)
ta có
tam giác def vuông tại D có đường cao DK nên
DE^2=EK.EF =>EK=DE^2/EF=36/5
FK=EF-EK=64/5
DK^2=EK.FK=2304/25 =>DK=48/5
DF^2=KF.EF=256 =>DF=16
tick mik nha
Chọn B