K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

\(A=\frac{3x-1}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)

\(B=\frac{2x^2+x-1}{x+2}=\frac{\left(x+2\right)\left(2x-3\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

Để A,B đều là số nguyên thì \(x-1\in\left\{1;2;-1;-2\right\}\) và \(x+2\in\left\{1;5;-1;-5\right\}\)

Bạn tự làm nốt

22 tháng 8 2019

Làm câu a,b thôi nha !

a)Tính A khi x=1;x=2;x=5/2

x=1

Thay x vào biểu thức A, ta có:

\(\frac{3.x+2}{1-3}=-\frac{5}{2}\)

x=2

Thay x vào biểu thức A ta có:

\(\frac{3.2+2}{2-3}=-\frac{8}{1}=-8\)

x=5/2

Thay x vào biểu thức A ta có:

\(\frac{3.0,4+2}{0,4-3}=\frac{3,2}{-2,6}=\frac{16}{13}\)

b)Tìm x thuộc Z để A là số nguyên:

\(A=\frac{3x+2}{x-3}\)

Để A là số nguyên thì:

=>\(3x+2⋮x-3\)

\(\Rightarrow3x-9+11⋮x-3\)

\(\Rightarrow3\left(x-3\right)+11⋮x-3\)

\(\Rightarrow11⋮x-3\)

\(\Rightarrow x-3\inƯ\left(11\right)=\left\{1;11\right\}\)

Xét trường hợp

\(\orbr{\begin{cases}x-3=1\\x-3=11\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1+3=4\\x=11+3=14\end{cases}}\)

Vậy A là số nguyên thì

\(x\inƯ\left(4;14\right)\)

Các bài còn lại làm tương tự !

16 tháng 2 2019

Để một phân số A nào đó có giá trị một số nguyên thì tử số phải chia hết cho mẫu số.

Giải VD câu a nè:

Để phân số 4/x có giá trị là mốt ố nguyên thì 4 chia hết cho x

=> x thuộc Ư(4)={1;-1;2;-2;4;-4}

Vậy.........

Chắc cậu đủ thông minh để làm những câu còn lại !

4 tháng 10 2020

a) \(A=\frac{3x-1}{x-1}=\frac{\left(3x-3\right)+2}{x-1}=3+\frac{2}{x-1}\)

để A nguyên thì: \(\orbr{\begin{cases}x-1=\pm1\Leftrightarrow x=2;x=0\\x-1=\pm2\Leftrightarrow x=3;x=-1\end{cases}}\)

Vậy \(x\in\text{{}-1;0;2;3\)

\(B=\frac{2x^2+x-1}{x+2}=\frac{2x^2+4x-3x-6+5}{x+2}\)\(=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

4 tháng 10 2020

để B nguyên thì \(\orbr{\begin{cases}x+2=\pm1\Leftrightarrow x=-1;x=-3\\x+2=\pm5\Leftrightarrow x=3;x=-7\end{cases}}\)

21 tháng 8 2017

a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)

\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)

Suy ra  \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)

Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)

b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)

Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.

Vậy \(minC=-\frac{1}{2}\) khi x = 0.

1 tháng 10 2023

a) Do \(x^2-2x-6\) là số chính phương đặt \(x^2-2x-6=a^2\) 

\(\Rightarrow x^2-2x+1-7=a^2\)

\(\Rightarrow\left(x-1\right)^2-7=a^2\)

\(\Rightarrow\left(x-1\right)^2-a^2=7\)

\(\Rightarrow\left(x-a-1\right)\left(x+a-1\right)=7\)  

Do: \(x-a-1< x+a-1\) nên:

\(\left\{{}\begin{matrix}x-a-1=1\\x+a-1=7\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x-2=8\\x+a=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=10\\x+a=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=5\\a=3\end{matrix}\right.\)  

Vậy: ...