K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (x-1)(x-2)>0

=>x-2>0 hoặc x-1<0

=>x>2 hoặc x<1

b: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)

=>(x+1)(x-4)<0

=>-1<x<4

c: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)

=>x-3/x-9<0

=>3<x<9

27 tháng 9 2024

c; \(\dfrac{5}{x}\) < 1 (đk \(x\ne\) 0)

⇒  \(\dfrac{5}{x}\) - 1 < 0 ⇒  \(\dfrac{5-x}{x}\) < 0; 5 - \(x=0\) ⇒ \(x=5\)

Lập bảng ta có:

\(x\)                 0                                  5
\(x-5\)        +       |              +                   0     -
\(x\)        -       0             +                    |       +
\(\dfrac{x-5}{x}\)        -      ||              +                    0      -

Theo bảng trên ta có  \(x\) \(\in\) ( - ∞; 0) \(\cup\) (5; +∞)

Vậy tập hợp nghiệm của bất phương trình đã cho là:

S = (- ∞; 0) \(\cup\) (5 ; + ∞)

 

29 tháng 6 2015

cái này dùng bảng xét dấu là nhanh nhất. mình làm mẫu cho một cái, bạn xem rồi tự tìm hiểu nha. nếu vẫn k hiểu thì liên hệ mình giải nốt cho. bảng xét dấu này lấy nghiệm của từng nhân tử rồi theo quy tắc phải cùng, trái khác để xét dấu

D= (x-2)(x+2).(4-x)(4+x)

a) C<0

nhìn bảng xét dấu ta có thể thấy rằng tích này âm trong 2 trường hợp: \(1\le x\le2\)và x>3

tương tự làm với câu 2 nha

29 tháng 6 2015

a) C < 0 <=>

hoặc x - 1 < 0 => x < 1

hoặc x - 2 < 0 => x < 2

hoặc x - 3 < 0 => x < 3

Vậy x < 3 thỏa mãn đề bài.

19 tháng 7 2017

a) Ta có :  (x+ 1).(x + 3) = 0

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(\text{loại}\right)\\x=-3\end{cases}}\)

26 tháng 8 2017

Đặt √x = t, x ≥ 0 => t ≥ 0.

Vế trái trở thành: t8 – t5 + t2 – t + 1 = f(t)

Nếu t = 0, t = 1, f(t) = 1 >0

Với 0 < t <1,      f(t) = t8 + (t2 - t5)+1 - t 

       t8 > 0, 1 - t > 0, t2 - t= t3(1 – t) > 0. Suy ra f(t) > 0.

Với t > 1 thì f(t) = t5(t3 – 1) + t(t - 1) + 1 > 0

Vậy f(t) > 0 ∀t ≥ 0. Suy ra: x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0

Để B>0 thì -x>0

hay x<0

Để B<0 thì -x<0

hay x>0

Để B=0 thì \(\left(1-x\right)^4=0\)

=>x=1