Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a) \(\left(x+1\right)\left(x-2\right)< 0\) khi 2 thừa số trái dấu
TH1: \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Leftrightarrow}-1< x< 2\left(chon\right)}\)
TH2: \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\Leftrightarrow}2< x< -1\left(loai\right)}\)
Vậy \(-1< x< 2\)( tự tìm x )
b) \(\left(x-1\right)\left(x+3\right)>0\)khi 2 thừa số cùng dấu
TH1: \(\hept{\begin{cases}x-1>0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x>-3\end{cases}\Leftrightarrow}x>1}\)
TH2: \(\hept{\begin{cases}x-1< 0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -3\end{cases}\Leftrightarrow}x< -3}\)
Vậy hoặc x > 1 hoặc x < -3 thì thỏa mãn
a) (2 - x)(2x + 1) > 0
TH1: \(\hept{\begin{cases}2-x>0\\2x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>-\frac{1}{2}\end{cases}\Rightarrow}-\frac{1}{2}< x< 2}\)
TH2: \(\hept{\begin{cases}2-x< 0\\2x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< -\frac{1}{2}\end{cases}\left(vl\right)}}\)(vô lí)
Vậy: -1/2 < x < 2
b) (2x+3)(x + 1) < 0
TH1: \(\hept{\begin{cases}2x+3>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-\frac{3}{2}\\x< -1\end{cases}\Rightarrow-\frac{3}{2}< x< -1}}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}\left(x< -\frac{3}{2}\right)\\x>-1\end{cases}}\left(vl\right)}\)(vô lí)
Vậy -3/2 < x < -1
\(-2x< 7\Leftrightarrow x>-3,5\)
\(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow x^2-3x+2>0\Leftrightarrow x^2-3x+\frac{9}{4}>\frac{1}{4}\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2>\frac{1}{4}\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}>\frac{1}{2}\\x-\frac{3}{2}< -\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>2\\x< 1\end{cases}}\)
\(a,\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow}-1< x< 2\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\Rightarrow}2< x< -1\left(KTM\right)}\)
Chỗ dấu "..." bạn không cần ghi.Mình viết vậy cho dễ nhìn. Bài này có một lời giải khá độc đáo trong sách nâng cao của mình.
a) Số thừa số âm ở VT chẵn.
Mà \(x-\frac{2}{5}< x+\frac{3}{7}< x+\frac{3}{4}\) nên
\(\orbr{\begin{cases}x-\frac{2}{5}>0\\x+\frac{3}{7}< 0..và...x+\frac{3}{4}>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\x< -\frac{3}{7}...và...x>-\frac{3}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\-\frac{3}{4}< x< -\frac{3}{7}\end{cases}}}\)
a, \(\left(x-1\right).\left(x+2\right)\)\(>0\Rightarrow\orbr{\begin{cases}x-1< 0;x+2< 0\left(loai\right)\Rightarrow x< 1\\x-1>0;x+2>0\Rightarrow x>1;x>-2\end{cases}}\)
=> -2 < x < 1
Câu b và câu d làm tương tự nha bạn(Câu b thì xét khác dấu)
Để B>0 thì -x>0
hay x<0
Để B<0 thì -x<0
hay x>0
Để B=0 thì \(\left(1-x\right)^4=0\)
=>x=1