K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

Violympic toán 9

NV
26 tháng 12 2020

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có hai số cùng phía so với 2, không mất tính tổng quát, giả sử đó là a và b

\(\Rightarrow\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab+4\ge2a+2b\)

\(\Leftrightarrow abc+4c\ge2ac+2bc\)

\(\Rightarrow VT\ge a^2+b^2+c^2+2ac+2bc-4c+4\)

\(VT\ge2ab+c^2-4c+4+2bc+2ac\)

\(VT\ge2\left(ab+bc+ca\right)+\left(c-2\right)^2\ge2\left(ab+bc+ca\right)\)

Dấu "=" xảy ra khi \(a=b=c=2\)

20 tháng 4 2018

de sai

27 tháng 8 2018

Trả lời:

đề sai

chúc bạn học tốt

20 tháng 1 2021

Chứng minh: \(x^3+y^3\ge xy\left(x+y\right)\left(1\right)\)

\(x^3+y^3\ge xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^3\ge4xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) đúng

\(\Rightarrow\left(1\right)\) đúng

Áp dụng BĐT \(x^3+y^3\ge xy\left(x+y\right)\)

\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{c^3+a^3}{ca}\)

\(\ge\dfrac{ab\left(a+b\right)}{ab}+\dfrac{bc\left(b+c\right)}{bc}+\dfrac{ca\left(c+a\right)}{ca}\)

\(=2\left(a+b+c\right)\)

20 tháng 1 2021

Wao chắc ở giỏi toán lắm lun nè 😅

28 tháng 10 2019

Bai này quen quen ! Mình còn ghi trong vở nè !

Chứng minh:

Áp dụng bất đẳng thức Schur ta có :

\(\left(a+b+c\right)^3+9abc\ge4\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2+\frac{9abc}{a+b+c}\ge4\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)+\frac{9abc}{a+b+c}\ge4\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ac\right)\left(đpcm\right)\)

NV
13 tháng 11 2021

BĐT cần c/m tương đương:

\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{4+2\left(ab+ac+ad+bc+bd+cd\right)}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{\left(a+b+c+d\right)^2}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\left(a+b+c+d\right)\)

\(\Leftrightarrow4\left(a^3+b^3+c^3+d^3\right)\ge4+3\left(a+b+c+d\right)\)

Dễ dàng chứng minh điều này bằng AM-GM:

\(a^3+a^3+1+b^3+b^3+1+c^3+c^3+1+d^3+d^3+1\ge3a^2+3b^2+3c^2+3d^2\)

\(\Rightarrow2\left(a^3+b^3+c^3+d^3\right)+4\ge12\)

\(\Rightarrow a^3+b^3+c^3+d^3\ge4\) (1)

Lại có:

\(a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\left(a+b+c+d\right)^2\)

\(\Rightarrow a+b+c+d\le4\) (2)

(1);(2) \(\Rightarrow4\left(a^3+b^3+c^3+d^3\right)\ge16\ge4+3.4\ge4+3\left(a+b+c+d\right)\) (đpcm)

26 tháng 5 2019

\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\) 

\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)

\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}}\)

\(=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca=1\left(1\right)\) 

Áp dụng BĐT Cô-si ta có:

\(a+b\ge2\sqrt{ab}\)

Tương tự:\(b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(2\right)\)

Từ (1) và (2) suy ra:

\(P\ge1+\frac{8abc}{8abc}=2\left(đpcm\right)\)

Dấu '=' xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

:))

26 tháng 5 2019

ở phần cô si phần cuối là bn sai r

vì >= nhưng ở dưới mẫu nên bị đảo lại thành =< nên bn lm như thế k đúng

đay là link giải https://diendan.hocmai.vn/threads/bdt-a-2-b-2-c-2-dfrac-8abc-a-b-b-c-c-a-geq-2.341255/