K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 11 2021

BĐT cần c/m tương đương:

\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{4+2\left(ab+ac+ad+bc+bd+cd\right)}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{\left(a+b+c+d\right)^2}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\left(a+b+c+d\right)\)

\(\Leftrightarrow4\left(a^3+b^3+c^3+d^3\right)\ge4+3\left(a+b+c+d\right)\)

Dễ dàng chứng minh điều này bằng AM-GM:

\(a^3+a^3+1+b^3+b^3+1+c^3+c^3+1+d^3+d^3+1\ge3a^2+3b^2+3c^2+3d^2\)

\(\Rightarrow2\left(a^3+b^3+c^3+d^3\right)+4\ge12\)

\(\Rightarrow a^3+b^3+c^3+d^3\ge4\) (1)

Lại có:

\(a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\left(a+b+c+d\right)^2\)

\(\Rightarrow a+b+c+d\le4\) (2)

(1);(2) \(\Rightarrow4\left(a^3+b^3+c^3+d^3\right)\ge16\ge4+3.4\ge4+3\left(a+b+c+d\right)\) (đpcm)

15 tháng 11 2020

4a) Sử dụng bất đẳng thức AM-GM ta có :

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)

Đẳng thức xảy ra khi x = y > 0

8 tháng 5 2017

câu 2 này ms làm tức thì nà

đầu tiên t c/m câu phụ \(\left(a-b\right)\left(b-c\right)\left(c-a\right)\le\dfrac{3\sqrt{3}}{2}\)

đặt P =VT ta có \(P\le\left|P\right|=\sqrt{P^2}\)

vậy ta c/m \(P^2\le\dfrac{27}{4}\)

<=> \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\le\dfrac{27}{4}\)

không mất tính tổng wat giả sử \(a\ge b\ge c\) (2)

dễ thấy \(\left(b-c\right)^2\le b^2;\left(c-a\right)^2\le a^2\)

=> c/m :\(a^2b^2\left(a-b\right)^2\le\dfrac{27}{4}\Leftrightarrow4a^2b^2\left(a-b\right)^2\le\dfrac{27}{4}\)

áp dụng AM-GM ta có

\(4a^2b^2\left(a-b\right)^2=\left(2ab\right)\left(2ab\right)\left(a^2-2ab+b^2\right)\le\left[\dfrac{2\left(2ab\right)+\left(a^2-2ab+b^2\right)}{3}\right]^3=\left(\dfrac{a^2+2ab+b^2}{3}\right)^3=\dfrac{\left(a+b\right)^6}{27}\)

mặt khác từ (2) ta có \(a+b\le a+b+c=3\)

=>dpcm

@quay trở lại bài toán áp dụng câu phụ mik vừa ns c2 <=> c/m

\(\left(a^3+b^3+c^3\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{243}{4}\)

nhân 3 cho 2 vế r áp dụng AM-GM

\(\left(a^3+b^3+c^3\right)3\left(a+b\right)\left(a+c\right)\left(c+b\right)\)\(\le\dfrac{\left[a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}{4}=\dfrac{\left(a+b+c\right)^6}{4}=\dfrac{729}{4}\)

=> dpcm

7 tháng 5 2017

giúp jum t @Neet;@Ace Legona (có cách khác AM-GM thì qá tốt nha!!)

10 tháng 1 2021

Ta có: \(\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\sqrt{a^2-ab+b^2}}=\left(a+b\right)\sqrt{a^2-ab+b^2}\)

\(=\sqrt{a+b}\sqrt{\left(a+b\right)\left(a^2-ab+b^2\right)}=\sqrt{a+b}\sqrt{a^3+b^3}\)

\(=\sqrt{\left(a+b\right)\left(a^3+b^3\right)}=\sqrt{\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)}\)

Áp dụng BĐT Bunhi... ta có:

\(\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)^2\ge\left(\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}\right)^2\)

\(\Rightarrow\sqrt{\left(\sqrt{a}^2+\sqrt{b}^2\right)+\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)}\)\(\ge\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}=\sqrt{a^4}+\sqrt{b^4}=a^2+b^2\)

\(\Rightarrow\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}\ge a^2+b^2\) (1)

Tương tự ta có: \(\frac{b^3+c^3}{\sqrt{b^2-bc+c^2}}\ge b^2+c^2\) (2)

\(\frac{c^3+d^3}{\sqrt{c^2-cd+d^2}}\ge c^2+d^2\)(3)

\(\frac{d^3+a^3}{\sqrt{d^2-da+a^2}}\ge d^2+a^2\)(4)

Cộng vế với vế của 1,2,3,4 ta được:

\(\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}+\frac{b^3+c^3}{\sqrt{b^2-bc+c^2}}+\frac{c^3+d^3}{\sqrt{c^2-cd+d^2}}+\frac{d^3+a^3}{\sqrt{d^2-da+a^2}}\)\(\ge2\left(a^2+b^2+c^2+d^2\right)\left(\text{đ}pcm\right)\)

10 tháng 1 2021

Hoặc \(\left(a+b\right)\sqrt{a^2-ab+b^2}\ge a^2+b^2\Leftrightarrow ab\left(a-b\right)^2\ge0\)(bình phương lên)

29 tháng 5 2017

Theo bất đẳng thức AM - GM:

     \(a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\)

Ta có:

     \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)\(\forall a,b,c\text{ không âm}\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+a^2+b^2+c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)(ĐPCM)

Đẳng thức xảy ra <=> a = b = c.

_Kik nha!! ^ ^

29 tháng 5 2017

làm sai sao kik đc

16 tháng 3 2017

gợi ý nè

1) \(ab+c=ab+c\left(a+b+c\right)\)....

2) nhiều cách lắm nhưng tớ chỉ đưa ra 2 cách ...có vẻ hay

đặt \(\sqrt{x}=a,\sqrt{y}=b\)

=>a3+b3=a4+b4=a5+b5

c1: ta có: \(\left(a^3+b^3\right)\left(a^5+b^5\right)=\left(a^4+b^4\right)^2\)......

c2: a5+b5=(a+b)(a4+b4)-ab(a3+b3)

=> 1=(a+b)-ab .......

3) try use UCT

4) tính sau =))

17 tháng 3 2017

gợi ý ??

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)