K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

Phương trình có 2 nghiệm phân biệt lớn hơn m 

<=> \(\hept{\begin{cases}\Delta=1^2-4m>0\\x_1+x_2>2m\\\left(x_1-m\right)\left(x_2-m\right)>0\end{cases}}\)

<=> \(\hept{\begin{cases}m< \frac{1}{4}\\-1>2m\\x_1x_2-m\left(x_1+x_2\right)+m^2>0\end{cases}}\)

<=> \(\hept{\begin{cases}m< \frac{1}{4}\\m< -\frac{1}{2}\\m+m+m^2>0\end{cases}}\)

<=> \(\hept{\begin{cases}m< -\frac{1}{2}\\m>0hoac< -2\end{cases}}\)

<=> m < -2.

NV
11 tháng 9 2021

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

NV
15 tháng 12 2020

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)

NM
6 tháng 9 2021

ta có : \(x^2-2mx+m-1=0\)

Để có hai nghiệm phân biệt nên ta có : \(\Delta'=m^2-m+1>0\forall m\)

khi đó hai nghiệm là :

\(x_1=m-\sqrt{m^2-m+1}< x_2=m+\sqrt{m^2-m+1}< 2\)

\(\Leftrightarrow\sqrt{m^2-m+1}< 2-m\Leftrightarrow\hept{\begin{cases}m\le2\\m^2-m+1< m^2-4m+4\end{cases}}\Leftrightarrow m< 1\)

vậy m<1

\(\text{Δ}=\left(m-1\right)^2-4\cdot\left(-m\right)=m^2-2m+1+4m=m^2+2m+1=\left(m+1\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m+1<>0

hay m<>-1

Theo đề, ta có: m-1<2

hay m<3