Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(x^2-2mx+m-1=0\)
Để có hai nghiệm phân biệt nên ta có : \(\Delta'=m^2-m+1>0\forall m\)
khi đó hai nghiệm là :
\(x_1=m-\sqrt{m^2-m+1}< x_2=m+\sqrt{m^2-m+1}< 2\)
\(\Leftrightarrow\sqrt{m^2-m+1}< 2-m\Leftrightarrow\hept{\begin{cases}m\le2\\m^2-m+1< m^2-4m+4\end{cases}}\Leftrightarrow m< 1\)
vậy m<1
\(\text{Δ}=\left(m-1\right)^2-4\cdot\left(-m\right)=m^2-2m+1+4m=m^2+2m+1=\left(m+1\right)^2>=0\)
Để phương trình có hai nghiệm phân biệt thì m+1<>0
hay m<>-1
Theo đề, ta có: m-1<2
hay m<3
Δ=(2m+2)^2-4*4m
=4m^2+8m+4-16m
=4m^2-8m+4
=(2m-2)^2>=0
Để ohương trình có hai nghiệm phân biệt cùng lớn hơn 1 thì
2m-2<>0 và 2(m+1)>0 và 4m>0
=>m>0 và m<>1
2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)
Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2
Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )
Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng
Nếu m > -4 thì ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)
Ta được : \(-4< m\le\frac{-3}{2}\)
Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)
Phương trình có 2 nghiệm phân biệt lớn hơn m
<=> \(\hept{\begin{cases}\Delta=1^2-4m>0\\x_1+x_2>2m\\\left(x_1-m\right)\left(x_2-m\right)>0\end{cases}}\)
<=> \(\hept{\begin{cases}m< \frac{1}{4}\\-1>2m\\x_1x_2-m\left(x_1+x_2\right)+m^2>0\end{cases}}\)
<=> \(\hept{\begin{cases}m< \frac{1}{4}\\m< -\frac{1}{2}\\m+m+m^2>0\end{cases}}\)
<=> \(\hept{\begin{cases}m< -\frac{1}{2}\\m>0hoac< -2\end{cases}}\)
<=> m < -2.