K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

Phương trình có 2 nghiệm phân biệt lớn hơn m 

<=> \(\hept{\begin{cases}\Delta=1^2-4m>0\\x_1+x_2>2m\\\left(x_1-m\right)\left(x_2-m\right)>0\end{cases}}\)

<=> \(\hept{\begin{cases}m< \frac{1}{4}\\-1>2m\\x_1x_2-m\left(x_1+x_2\right)+m^2>0\end{cases}}\)

<=> \(\hept{\begin{cases}m< \frac{1}{4}\\m< -\frac{1}{2}\\m+m+m^2>0\end{cases}}\)

<=> \(\hept{\begin{cases}m< -\frac{1}{2}\\m>0hoac< -2\end{cases}}\)

<=> m < -2.

NM
6 tháng 9 2021

ta có : \(x^2-2mx+m-1=0\)

Để có hai nghiệm phân biệt nên ta có : \(\Delta'=m^2-m+1>0\forall m\)

khi đó hai nghiệm là :

\(x_1=m-\sqrt{m^2-m+1}< x_2=m+\sqrt{m^2-m+1}< 2\)

\(\Leftrightarrow\sqrt{m^2-m+1}< 2-m\Leftrightarrow\hept{\begin{cases}m\le2\\m^2-m+1< m^2-4m+4\end{cases}}\Leftrightarrow m< 1\)

vậy m<1

\(\text{Δ}=\left(m-1\right)^2-4\cdot\left(-m\right)=m^2-2m+1+4m=m^2+2m+1=\left(m+1\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m+1<>0

hay m<>-1

Theo đề, ta có: m-1<2

hay m<3

Δ=(2m+2)^2-4*4m

=4m^2+8m+4-16m

=4m^2-8m+4

=(2m-2)^2>=0

Để ohương trình có hai nghiệm phân biệt cùng lớn hơn 1 thì

2m-2<>0 và 2(m+1)>0 và 4m>0

=>m>0 và m<>1

7 tháng 2 2023

hình như không đúng bn ạ

 

27 tháng 4 2020

2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)

Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2

Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )

Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng 

Nếu m > -4 thì  ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)

Ta được : \(-4< m\le\frac{-3}{2}\)

Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)

8 tháng 2

Tại sao 2x1=x2 lại loại