K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(x^2-6x-2+\frac{14}{x^2-6x+7}=0\)

\(\Leftrightarrow\frac{\left(x^2-6x-2\right)\left(x^2-6x+7\right)+14}{x^2-6x+7}=0\)

\(\Leftrightarrow x^4-12x^3+41x^2-30x-14+14=0\)

\(\Leftrightarrow x^4-12x^3+41x^2-30x=0\)

20 tháng 2 2020

ĐKXĐ : \(x^2-6x+7\ne0\)

=> \(x^2-6x+9-2\ne0\)

=> \(\left(x-3\right)^2\ne2\)

=> \(\left[{}\begin{matrix}x-3\ne-\sqrt{2}\\x-3\ne\sqrt{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\ne3-\sqrt{2}\\x\ne3+\sqrt{2}\end{matrix}\right.\)

- Ta có : \(x^2-6x-2+\frac{14}{x^2-6x+7}=0\)

Đặt : \(a=x^2-6x+7\)

=> \(a-9=x^2-6x-2\)

- Thay \(a-9=x^2-6x-2\), \(a=x^2-6x+7\) vào phương trình ta được : \(a-9+\frac{14}{a}=0\)

=> \(\frac{a^2}{a}-\frac{9a}{a}+\frac{14}{a}=0\)

=> \(a^2-9a+14=0\)

=> \(a^2-7a-2a+14=0\)

=> \(a\left(a-2\right)-7\left(a-2\right)=0\)

=> \(\left[{}\begin{matrix}a-7=0\\a-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=7\\a=2\end{matrix}\right.\)

- Thay \(a=x^2-6x+7\) vào phương trình trên ta được :

\(\left[{}\begin{matrix}x^2-6x+7=7\\x^2-6x+7=2\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2-6x=0\\x^2-6x=5\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2-5x-x-5=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\left(x-6\right)=0\\x\left(x-1\right)-5\left(x-1\right)=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\left(x-6\right)=0\\\left(x-1\right)\left(x-5\right)=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x-6=0\\x-5=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=6\\x=5\\x=1\end{matrix}\right.\) ( TM )

Vậy phương trình có nghiệm là x = 0, x = 6, x = 5, x = 1 .

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

c) ĐK: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2(x-11)}{x^2-4}\)

\(\Leftrightarrow \frac{(x-2)^2-3(x+2)}{(x+2)(x-2)}=\frac{2(x-11)}{(x-2)(x+2)}\)

\(\Leftrightarrow \frac{x^2-7x-2}{(x-2)(x+2)}=\frac{2x-22}{(x-2)(x+2)}\)

\(\Rightarrow x^2-7x-2=2x-22\)

\(\Leftrightarrow x^2-9x+20=0\Leftrightarrow (x-4)(x-5)=0\Rightarrow x=4\) hoặc $x=5$

(đều thỏa mãn)

d) ĐK: \(x^2-6x+7\neq 0\)

PT \(\Leftrightarrow (x^2-6x+7)+\frac{14}{x^2-6x+7}-9=0\)

\(\Rightarrow (x^2-6x+7)^2-9(x^2-6x+7)+14=0\)

\(\Leftrightarrow (x^2-6x+7-2)(x^2-6x+7-7)=0\)

\(\Leftrightarrow (x^2-6x+5)(x^2-6x)=0\)

\(\Leftrightarrow (x-1)(x-5)x(x-6)=0\)

\(\Rightarrow x\in \left\{1;5;0;6\right\}\) (đều thỏa mãn)

Vậy.........

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

a) ĐKXĐ: $x\neq 1$

PT \(\Leftrightarrow \frac{x^2+x+1+2(x-1)}{(x-1)(x^2+x+1)}=\frac{3x^2}{x^3-1}\)

\(\Leftrightarrow \frac{x^2+3x-1}{x^3-1}=\frac{3x^2}{x^3-1}\)

\(\Rightarrow x^2+3x-1=3x^2\Leftrightarrow 2x^2-3x+1=0\)

\(\Leftrightarrow (x-1)(2x-1)=0\)

Mà $x\neq 1$ nên $2x-1=0\Rightarrow x=\frac{1}{2}$ là nghiệm

b) ĐK: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{3-x}{2-x}=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)

\(\Leftrightarrow \frac{1}{x+2}-\frac{3-x}{2-x}=\frac{6-x}{3(x^2-4)}\)

\(\Leftrightarrow \frac{1}{x+2}+\frac{3-x}{x-2}=\frac{6-x}{3(x-2)(x+2)}\)

\(\Leftrightarrow \frac{-x^2+2x+4}{(x-2)(x+2)}=\frac{6-x}{3(x-2)(x+2)}\)

\(\Rightarrow 3(-x^2+2x+4)=6-x\)

\(\Leftrightarrow -3x^2+7x+6=0\)

\(\Leftrightarrow (x-3)(3x+2)=0\Rightarrow x=3\) hoặc $x=-\frac{2}{3}$

Vậy........

8 tháng 1 2017

\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)

\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)  

PS: Điều kiện xác đinh bạn tự làm nhé 

26 tháng 2 2018

\(\frac{2x-3}{\left(7-6x\right)^2}+\frac{x-2}{\left(7-6x\right)^2}=\frac{6x-3}{\left(3x-5\right)^2}-\frac{12x-10}{\left(3x-5\right)^2}\)

\(\Leftrightarrow\frac{2x-3+x-2}{\left(7-6x\right)^2}=\frac{6x-3-12x+10}{\left(3x-5\right)^2}\)

\(\Leftrightarrow\frac{3x-5}{\left(7-6x\right)^2}=\frac{7-6x}{\left(3x-5\right)^2}\)

\(\Leftrightarrow\left(7-6x\right)^3=\left(3x-5\right)^3\)

\(\Leftrightarrow7-6x=3x-5\)

\(\Leftrightarrow7+5=3x+6x\)

\(\Leftrightarrow12=9x\)

\(\Leftrightarrow x=\frac{4}{3}\)

Vậy \(x=\frac{4}{3}\)

27 tháng 9 2021

a. x2 - 6x = -9

<=> x2 - 6x + 9 = 0

<=> (x - 3)2 = 0

<=> x - 3 = 0

<=> x = 3

b. 2(x + 3) - x2 + 3x = 0

<=> 2(x + 3) - x(x + 3) = 0

<=> (2 - x)(x + 3) = 0

<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\) 

27 tháng 9 2021

Phần b bị sai rồi kìa nếu đặt dấu trừ trc thì trong ngoặc đổi dấu 

23 tháng 7 2016

a)  x(2x-7)-4x+14=0

=>x(2x-7)-2(2x-7)=0

=>(x-2)(2x-7)=0

=>x-2=0 hoặc 2x-7=0

=>x=2 hoặc x=7/2

b, x(x-1)+2x-2=0

=>x(x-1)+2(x-1)=0

=>(x+2)(x-1)=0

=>x+2=0 hoặc x-1=0

=>x=-2 hoặc x=1

c, 2x^3+3x^2+2x+3=0

=>x2(2x+3)+2x+3=0

=>(x2+1)(2x+3)=0

=>x2+1=0 hoặc 2x+3=0

Vì x2+1>0 với mọi x ->vô nghiệm

=>2x+3=0 =>x=-3/2

d, x^3+6x^2+11x+6=0

=>x3+3x3+2x+3x2+3x3+6=0

=>x(x2+3x+2)+3(x2+3x+2)=0

=>(x2+3x+2)(x+3)=0

=>[x2+x+2x+2](x+3)=0

=>[x(x+1)+2(x+1)](x+3)=0

=>(x+1)(x+2)(x+3)=0

=>x+1=0 hoặc x+2=0 hoặc x+3=0

=>x=-1 hoặc x=-2 hoặc x=-3

23 tháng 7 2016

giúp mình với

23 tháng 7 2016

a)  x(2x-7)-4x+14=0

=>x(2x-7)-2(2x-7)=0

=>(x-2)(2x-7)=0

=>x-2=0 hoặc 2x-7=0

=>x=2 hoặc x=7/2

b, x(x-1)+2x-2=0

=>x(x-1)+2(x-1)=0

=>(x+2)(x-1)=0

=>x+2=0 hoặc x-1=0

=>x=-2 hoặc x=1

c, 2x^3+3x^2+2x+3=0

=>x2(2x+3)+2x+3=0

=>(x2+1)(2x+3)=0

=>x2+1=0 hoặc 2x+3=0

Vì x2+1>0 với mọi x ->vô nghiệm

=>2x+3=0 =>x=-3/2

d, x^3+6x^2+11x+6=0

=>x3+3x3+2x+3x2+3x3+6=0

=>x(x2+3x+2)+3(x2+3x+2)=0

=>(x2+3x+2)(x+3)=0

=>[x2+x+2x+2](x+3)=0

=>[x(x+1)+2(x+1)](x+3)=0

=>(x+1)(x+2)(x+3)=0

=>x+1=0 hoặc x+2=0 hoặc x+3=0

=>x=-1 hoặc x=-2 hoặc x=-3

30 tháng 10 2019

a) \(x^2-4x-7=0\)

Ta có: \(\Delta=4^2+4.28=128,\sqrt{\Delta}=\sqrt{128}\)

pt có 2 nghiệm:

\(x_1=\frac{4+\sqrt{128}}{2}\);\(x_2=\frac{4-\sqrt{128}}{2}\)

30 tháng 10 2019

b) \(x^2-x-11=0\)

Ta có: \(\Delta=1^2+4.11=45,\sqrt{\Delta}=\sqrt{45}\)

pt có 2 nghiệm:

\(x_1=\frac{1+\sqrt{45}}{2}\)\(x_2=\frac{1-\sqrt{45}}{2}\)

18 tháng 2 2020

Mấy câu này khá giống nhau nhé anh (câu 1 giống câu 4 và 5, cấu 2 giống câu 3) =)))

Câu 1: 2x - 7 + (x - 14) = 0

<=> 3x -21 = 0

<=> 3x = 21 => x = 7

Câu 2:

x2 - 6x = 0 <=> x.(x - 6) = 0 => \(\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)

Chúc anh học tốt !!!

Câu 1, 2 có người làm rồi nên mik làm tiếp cho mấy câu tiếp. Cứ áp dụng A.B = 0 => A = 0 hoặc B = 0

3; ( x - 3 )( 16 - 4x ) = 0

=> x - 3 = 0 hoặc 16 - 4x = 0

=> x = 3 hoặc x = 4

Vậy x = 3 hoặc x = 4.

4; ( x - 3 ) - ( 16 - 4x ) = 0

=> x - 3 - 16 + 4x = 0

=> ( x + 4x ) - ( 3 + 16 ) = 0

=> 5x - 19 = 0

=> x = 19/5

Vậy x = 19/5

5; ( x + 3 ) + ( 16 - 4x ) = 0

=> x + 3 + 16 - 4x = 0

=> ( x - 4x ) + ( 16 + 3 ) = 0

=> 3x + 19 = 0

=> x = 19/3

Vậy x = 19/3

4 tháng 10 2021

1, \(3x\left(x-7\right)+2x-14=0\)

\(\Rightarrow3x\left(x-7\right)+2\left(x-7\right)=0\)

\(\Rightarrow\left(x-7\right)\left(3x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=\frac{-2}{3}\end{cases}}\)

2, \(x^3+3x^2-\left(x+3\right)=0\)

\(\Rightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x^2-1\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm1\end{cases}}\)

3, \(15x-5+6x^2-2x=0\)

\(\Rightarrow\left(15x-5\right)+\left(6x^2-2x\right)=0\)

\(\Rightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)

\(\Rightarrow\left(3x-1\right)\left(5+2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{-5}{2}\end{cases}}\)

4, \(5x-2-25x^2+10x=0\)

\(\Rightarrow\left(5x-25x^2\right)-\left(2-10x\right)=0\)

\(\Rightarrow5x\left(1-5x\right)-2\left(1-5x\right)=0\)

\(\Rightarrow\left(1-5x\right)\left(5x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}1-5x=0\\5x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{2}{5}\end{cases}}\)