K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(x^2-6x-2+\frac{14}{x^2-6x+7}=0\)

\(\Leftrightarrow\frac{\left(x^2-6x-2\right)\left(x^2-6x+7\right)+14}{x^2-6x+7}=0\)

\(\Leftrightarrow x^4-12x^3+41x^2-30x-14+14=0\)

\(\Leftrightarrow x^4-12x^3+41x^2-30x=0\)

20 tháng 2 2020

ĐKXĐ : \(x^2-6x+7\ne0\)

=> \(x^2-6x+9-2\ne0\)

=> \(\left(x-3\right)^2\ne2\)

=> \(\left[{}\begin{matrix}x-3\ne-\sqrt{2}\\x-3\ne\sqrt{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\ne3-\sqrt{2}\\x\ne3+\sqrt{2}\end{matrix}\right.\)

- Ta có : \(x^2-6x-2+\frac{14}{x^2-6x+7}=0\)

Đặt : \(a=x^2-6x+7\)

=> \(a-9=x^2-6x-2\)

- Thay \(a-9=x^2-6x-2\), \(a=x^2-6x+7\) vào phương trình ta được : \(a-9+\frac{14}{a}=0\)

=> \(\frac{a^2}{a}-\frac{9a}{a}+\frac{14}{a}=0\)

=> \(a^2-9a+14=0\)

=> \(a^2-7a-2a+14=0\)

=> \(a\left(a-2\right)-7\left(a-2\right)=0\)

=> \(\left[{}\begin{matrix}a-7=0\\a-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=7\\a=2\end{matrix}\right.\)

- Thay \(a=x^2-6x+7\) vào phương trình trên ta được :

\(\left[{}\begin{matrix}x^2-6x+7=7\\x^2-6x+7=2\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2-6x=0\\x^2-6x=5\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2-5x-x-5=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\left(x-6\right)=0\\x\left(x-1\right)-5\left(x-1\right)=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\left(x-6\right)=0\\\left(x-1\right)\left(x-5\right)=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x-6=0\\x-5=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=6\\x=5\\x=1\end{matrix}\right.\) ( TM )

Vậy phương trình có nghiệm là x = 0, x = 6, x = 5, x = 1 .

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

c) ĐK: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2(x-11)}{x^2-4}\)

\(\Leftrightarrow \frac{(x-2)^2-3(x+2)}{(x+2)(x-2)}=\frac{2(x-11)}{(x-2)(x+2)}\)

\(\Leftrightarrow \frac{x^2-7x-2}{(x-2)(x+2)}=\frac{2x-22}{(x-2)(x+2)}\)

\(\Rightarrow x^2-7x-2=2x-22\)

\(\Leftrightarrow x^2-9x+20=0\Leftrightarrow (x-4)(x-5)=0\Rightarrow x=4\) hoặc $x=5$

(đều thỏa mãn)

d) ĐK: \(x^2-6x+7\neq 0\)

PT \(\Leftrightarrow (x^2-6x+7)+\frac{14}{x^2-6x+7}-9=0\)

\(\Rightarrow (x^2-6x+7)^2-9(x^2-6x+7)+14=0\)

\(\Leftrightarrow (x^2-6x+7-2)(x^2-6x+7-7)=0\)

\(\Leftrightarrow (x^2-6x+5)(x^2-6x)=0\)

\(\Leftrightarrow (x-1)(x-5)x(x-6)=0\)

\(\Rightarrow x\in \left\{1;5;0;6\right\}\) (đều thỏa mãn)

Vậy.........

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

a) ĐKXĐ: $x\neq 1$

PT \(\Leftrightarrow \frac{x^2+x+1+2(x-1)}{(x-1)(x^2+x+1)}=\frac{3x^2}{x^3-1}\)

\(\Leftrightarrow \frac{x^2+3x-1}{x^3-1}=\frac{3x^2}{x^3-1}\)

\(\Rightarrow x^2+3x-1=3x^2\Leftrightarrow 2x^2-3x+1=0\)

\(\Leftrightarrow (x-1)(2x-1)=0\)

Mà $x\neq 1$ nên $2x-1=0\Rightarrow x=\frac{1}{2}$ là nghiệm

b) ĐK: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{3-x}{2-x}=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)

\(\Leftrightarrow \frac{1}{x+2}-\frac{3-x}{2-x}=\frac{6-x}{3(x^2-4)}\)

\(\Leftrightarrow \frac{1}{x+2}+\frac{3-x}{x-2}=\frac{6-x}{3(x-2)(x+2)}\)

\(\Leftrightarrow \frac{-x^2+2x+4}{(x-2)(x+2)}=\frac{6-x}{3(x-2)(x+2)}\)

\(\Rightarrow 3(-x^2+2x+4)=6-x\)

\(\Leftrightarrow -3x^2+7x+6=0\)

\(\Leftrightarrow (x-3)(3x+2)=0\Rightarrow x=3\) hoặc $x=-\frac{2}{3}$

Vậy........

8 tháng 1 2017

\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)

\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)  

PS: Điều kiện xác đinh bạn tự làm nhé 

5 tháng 12 2018

\(B=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}=1+\frac{2}{x^2-6x+12}\)

ta có: \(x^2-6x+12=x^2-2.3.x+3^2+4=\left(x-3\right)^2+4\ge4\)

để Bmax => \(\left(\frac{2}{x^2-6x+12}\right)max\Rightarrow x^2-6x+12min\)và lớn hơn 0 vì 2>0

\(\left(x-3\right)^2+4\) \(\ge\)4

dấu = xảy ra khi x-3=0

=> x=3

Vậy \(MaxB=\frac{3}{2}\)khi x=3

4 tháng 6 2016

\(P=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}=\frac{x^2-6x+12}{x^2-6x+12}+\frac{2}{x^2-6x+12}=1+\frac{2}{x^2-6x+12}\)

\(=1+\frac{2}{\left(x^2-6x+9\right)+3}=1+\frac{2}{\left(x^2-2.x.3+3^2\right)+3}=1+\frac{2}{\left(x-3\right)^2+3}\)

P lớn nhất \(\Leftrightarrow\) \(\frac{2}{\left(x-3\right)^2+3}\) lớn nhất \(\Leftrightarrow\left(x-3\right)^2+3\) nhỏ nhất

Ta có: \(\) \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+3\ge3\)

\(\Rightarrow\frac{2}{\left(x-3\right)^2+3}\le\frac{2}{3}\)

Do đó GTLN của \(\frac{2}{\left(x-3\right)^2+3}\) là 2/3

=> GTLN của \(P=1+\frac{2}{3}=\frac{5}{3}\)

Dấu "=" xảy ra <=> x=3

26 tháng 12 2016

a)

DK:tồn tại P \(\hept{\begin{cases}x\ne0\\x\ne-+6\\x\ne3\end{cases}}\)

\(P=\left(\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\\ \)

\(P=\left(\frac{x^2-\left(x-6\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\)

\(P=\left(\frac{x^2-\left(x^2-12x+36\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\)

\(P=\left(\frac{12\left(x-3\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}=\frac{6}{x-6}\)

b)6/(x-6)=1=> x-6=6=> x=12

c)x-6<0=> x<6

23 tháng 12 2018

dieu kien xac  dinh cua bieu thuc tren la x khac -+6,x khac 3