Cho a>0 .Chứng minh rằng \(\sqrt{a}+2>\sqrt{a+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) )
b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)
c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )
\(\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>a\)
Có: \(\hept{\begin{cases}a^2-b^2>0\\2a-b^2>0\\a;b>0\end{cases}\Leftrightarrow a>b>0.}\)
\(\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>a\)(1)
<=> \(\sqrt{2ab-b^2}>a-\sqrt{a^2-b^2}\)
<=> \(2ab-b^2>a^2-2a\sqrt{a^2-b^2}+a^2-b^2\)
<=> \(b>a-\sqrt{a^2-b^2}\)
<=> \(a-b-\sqrt{a^2-b^2}< 0\)
<=> \(\sqrt{a-b}\left(\sqrt{a-b}-\sqrt{a+b}\right)< 0\)đúng vì \(\sqrt{a-b}-\sqrt{a+b}< 0\)
=> (1) đúng.
Chia hai vế cho a, bất đẳng thức cần chứng minh được viết lại thành:
\(\sqrt{1-\left(\frac{b}{a}\right)^2}+\sqrt{2\left(\frac{b}{a}\right)-\left(\frac{b}{a}\right)^2}>1\)
Đặt \(\frac{b}{a}=x\Rightarrow0< x< 1\). Ta cần chứng minh:
\(\sqrt{1-x^2}+\sqrt{2x-x^2}>1\)
\(\Leftrightarrow2x-2x^2+2\sqrt{\left(1-x^2\right)\left(2x-x^2\right)}>0\) (bình phương 2 vế)
\(\Leftrightarrow2x\left(1-x\right)+2\sqrt{x\left(1-x\right)\left(1+x\right)\left(2-x\right)}>0\) (đúng)
Ta có đpcm.
Lời giải:
a) Ta thấy: \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0, \forall a,b>0\)
\(\Rightarrow a+b\geq 2\sqrt{ab}>0\Rightarrow \frac{1}{a+b}\le \frac{1}{2\sqrt{ab}}\).
Vì $a> b$ nên dấu bằng không xảy ra . Tức \(\frac{1}{a+b}< \frac{1}{2\sqrt{ab}}\)
Ta có đpcm
b)
Áp dụng kết quả phần a:
\(\frac{1}{3}=\frac{1}{1+2}< \frac{1}{2\sqrt{2.1}}\)
\(\frac{1}{5}=\frac{1}{3+2}< \frac{1}{2\sqrt{2.3}}\)
\(\frac{1}{7}=\frac{1}{4+3}< \frac{1}{2\sqrt{4.3}}\)
.....
\(\frac{1}{4021}=\frac{1}{2011+2010}< \frac{1}{2\sqrt{2011.2010}}\)
Do đó:
\(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}\)
\(< \frac{\sqrt{2}-\sqrt{1}}{2\sqrt{2.1}}+\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3.2}}+\frac{\sqrt{4}-\sqrt{3}}{2\sqrt{4.3}}+....+\frac{\sqrt{2011}-\sqrt{2010}}{2\sqrt{2011.2010}}\)
\(=\frac{1}{2}-\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2010}}-\frac{1}{2\sqrt{2011}}\)
\(=\frac{1}{2}-\frac{1}{2\sqrt{2011}}< \frac{1}{2}\) (đpcm)
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
Bình phương 2 vế:
\(a+4\sqrt{a}+4>a+4\)
\(\Leftrightarrow4\sqrt{a}>0\) (luôn đúng \(\forall a>0\))
Vậy \(\sqrt{a}+2>\sqrt{a+4}\)
\(\sqrt{a}+2>\sqrt{a+4}\) với a>0
\(\Leftrightarrow\left(\sqrt{a}+2\right)^2>\left(\sqrt{a+4}\right)^2\)
\(\Leftrightarrow a+4+4\sqrt{a}>a+4\)
\(\Leftrightarrow4\sqrt{a}>0\)(LĐ với mọi a>0)
Vì \(\sqrt{a}>0\) với mọi a>o \(\Rightarrow\)4\(\sqrt{a}\)>0