K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2020

Bình phương 2 vế:

\(a+4\sqrt{a}+4>a+4\)

\(\Leftrightarrow4\sqrt{a}>0\) (luôn đúng \(\forall a>0\))

Vậy \(\sqrt{a}+2>\sqrt{a+4}\)

16 tháng 2 2020

\(\sqrt{a}+2>\sqrt{a+4}\) với a>0

\(\Leftrightarrow\left(\sqrt{a}+2\right)^2>\left(\sqrt{a+4}\right)^2\)

\(\Leftrightarrow a+4+4\sqrt{a}>a+4\)

\(\Leftrightarrow4\sqrt{a}>0\)(LĐ với mọi a>0)

\(\sqrt{a}>0\) với mọi a>o \(\Rightarrow\)4\(\sqrt{a}\)>0

Bài 1: 

Ta có: \(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)

NV
21 tháng 8 2021

Áp dụng  \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)

\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

21 tháng 8 2021

thx, appreciate it

23 tháng 7 2019

a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) ) 

b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)

c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm ) 

NV
6 tháng 10 2021

\(a^2=\dfrac{\sqrt{2}}{4}\left(1-a\right)\)

\(\Rightarrow a^4=\dfrac{1}{8}\left(1-a\right)^2\)

\(\Rightarrow a^4+a+1=\dfrac{1}{8}\left(1-a\right)^2+a+1=\dfrac{1}{8}\left(a^2+6a+9\right)=\dfrac{1}{8}\left(a+3\right)^2\)

\(\Rightarrow\sqrt{a^4+a+1}-a^2=\sqrt{\dfrac{1}{8}\left(3+a\right)^2}-a^2=\dfrac{\sqrt{2}}{4}\left(a+3\right)-\dfrac{\sqrt{2}}{4}\left(1-a\right)=\dfrac{\sqrt{2}}{2}\left(a+1\right)\)

\(\Rightarrow\dfrac{a+1}{\sqrt{a^4+a+1}-a^2}=\dfrac{a+1}{\dfrac{\sqrt{2}}{2}\left(a+1\right)}=\sqrt{2}\)

6 tháng 10 2021

Dạ em cám ơn ạ

HQ
Hà Quang Minh
Giáo viên
5 tháng 8 2023

a, Khi x = 2, ta được: 

\(A=\dfrac{4}{2\sqrt{2}-2}=2+2\sqrt{2}\)

b, \(B=\dfrac{\sqrt{x}-4}{x-2\sqrt{x}}+\dfrac{3}{\sqrt{x}-2}\\ \Rightarrow B=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ \Rightarrow B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(P=B:A=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{4}=-\left(\sqrt{x}-1\right)=1-\sqrt{x}\) (đpcm)