Tìm tích của hai số dương x,y biết 4x=5y va x2-y2=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
TA có : 4x = 5y
=> \(\frac{x}{5}=\frac{y}{4}=t\)
=> x = 5t ; y = 4t
x^2 - y^2 = 25t^2 - 16t^2 = 1
=> 9t^2 = 1
=> t^2 = 1/9 => t = 1/3 ( vì x ; y dương => t dương )
(+) với t = 1/3 => x = 5.1/3 = 5/3
=> y = 4.1/3 = 4/3
Tích là : 5/3 . 4/3 = 20/9
a) x2-xy+5y-25
= x(2-y)+ 5(y-2)
= x(2-y)-5(2-y)
= (x-5)(2-y)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{-5}=\dfrac{-3x+2y}{-12-10}=\dfrac{55}{-22}=\dfrac{-5}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-20}{2}=-10\\y=\dfrac{25}{2}\end{matrix}\right.\)
b: Ta có: \(\dfrac{x}{y}=\dfrac{-7}{4}\)
nên \(\dfrac{x}{-7}=\dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{4x-5y}{-28-20}=\dfrac{72}{-48}=\dfrac{-3}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=\dfrac{-12}{2}=-6\end{matrix}\right.\)
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
Lời giải:
$4x=5y\Rightarrow x=\frac{5}{4}y$. Khi đó:
$x^2-y^2=1$
$\Rightarrow (\frac{5}{4}y)^2-y^2=1$
$\Rightarrow \frac{25}{16}y^2-y^2=1$
$\Rightarrow \frac{9}{16}y^2=1\Rightarrow y^2=\frac{16}{9}$
$\Rightarrow y=\pm \frac{4}{3}$
Nếu $y=\frac{4}{3}$ thì $x=\frac{5}{4}.\frac{4}{3}=\frac{5}{3}$
$\Rightarrow xy=\frac{4}{3}.\frac{5}{3}=\frac{20}{9}$
Nếu $y=\frac{-4}{3}$ thì $x=\frac{5}{4}.\frac{-4}{3}=\frac{-5}{3}$
$\Rightarrow xy=\frac{-4}{3}.\frac{-5}{3}=\frac{20}{9}$
Vậy $xy=\frac{20}{9}$