Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có : 4x = 5y
=> \(\frac{x}{5}=\frac{y}{4}=t\)
=> x = 5t ; y = 4t
x^2 - y^2 = 25t^2 - 16t^2 = 1
=> 9t^2 = 1
=> t^2 = 1/9 => t = 1/3 ( vì x ; y dương => t dương )
(+) với t = 1/3 => x = 5.1/3 = 5/3
=> y = 4.1/3 = 4/3
Tích là : 5/3 . 4/3 = 20/9
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{-5}=\dfrac{-3x+2y}{-12-10}=\dfrac{55}{-22}=\dfrac{-5}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-20}{2}=-10\\y=\dfrac{25}{2}\end{matrix}\right.\)
b: Ta có: \(\dfrac{x}{y}=\dfrac{-7}{4}\)
nên \(\dfrac{x}{-7}=\dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{4x-5y}{-28-20}=\dfrac{72}{-48}=\dfrac{-3}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=\dfrac{-12}{2}=-6\end{matrix}\right.\)
Bài 1: x và y tỉ lệ nghịch với nhau
nên \(x_1\cdot y_1=x_2\cdot y_2\)
=>\(\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}\)
=>\(\dfrac{y_1}{8}=\dfrac{y_2}{6}\)
=>\(\dfrac{y_1}{4}=\dfrac{y_2}{3}\)
mà \(y_1-y_2=6\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{y_1}{4}=\dfrac{y_2}{3}=\dfrac{y_1-y_2}{4-3}=\dfrac{6}{1}=6\)
=>\(y_1=6\cdot4=24;y_2=3\cdot6=18\)
Bài 2:
Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là a(m), b(m)
(Điều kiện:a>0; b>0)
Nửa chu vi mảnh vườn là 420/2=210(m)
=>a+b=210
Chiều dài và chiều rộng lần lượt tỉ lệ với 9;5
=>\(\dfrac{a}{9}=\dfrac{b}{5}\)
mà a+b=210
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{5}=\dfrac{a+b}{9+5}=\dfrac{210}{14}=15\)
=>\(a=15\cdot9=135;b=15\cdot5=75\)
Diện tích mảnh vườn là \(135\cdot75=10125\left(m^2\right)\)
Lời giải:
$4x=5y\Rightarrow x=\frac{5}{4}y$. Khi đó:
$x^2-y^2=1$
$\Rightarrow (\frac{5}{4}y)^2-y^2=1$
$\Rightarrow \frac{25}{16}y^2-y^2=1$
$\Rightarrow \frac{9}{16}y^2=1\Rightarrow y^2=\frac{16}{9}$
$\Rightarrow y=\pm \frac{4}{3}$
Nếu $y=\frac{4}{3}$ thì $x=\frac{5}{4}.\frac{4}{3}=\frac{5}{3}$
$\Rightarrow xy=\frac{4}{3}.\frac{5}{3}=\frac{20}{9}$
Nếu $y=\frac{-4}{3}$ thì $x=\frac{5}{4}.\frac{-4}{3}=\frac{-5}{3}$
$\Rightarrow xy=\frac{-4}{3}.\frac{-5}{3}=\frac{20}{9}$
Vậy $xy=\frac{20}{9}$