K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

Trên tia đối của $MA$ lấy $N$ sao cho $MN=MA$

Ta có:

$BM=CM(gt)$

$\widehat{AMB}=\widehat{NMC}(đđ)$

$MA=MN(gt)$

$\Rightarrow \Delta{MAB}=\Delta{MNC}(c.g.c)$

$\Rightarrow AB=NC$ và $\widehat{MBA}=\widehat{MCN}$

Do đó $\widehat{MBA}=\widehat{MCN}$ nên $AB||NC$

$\Rightarrow \widehat{BAC}+\widehat{ACN}=90^o$

Lại có: $\widehat{BAC}=90^o$ nên $\widehat{ACN}=90^o$

$\Rightarrow \Delta{ABC}=\Delta{CNA}(c-g-c)$ vì:

$AC:chung$

$\widehat{BAC}=\widehat{ACN}=90^o$

$AB=NC$

$\Rightarrow BC=AN$

$\Rightarrow AM=\dfrac{1}{2}BC$ (đpcm)

13 tháng 2 2020

9 tháng 3 2016

ai giúp mk vs !!!

14 tháng 11 2021
a) Ta có: ΔAMB = ΔAMC ⇒ MB = MC (2 cạnh tương ứng) ⇒ M là trung điểm của BC b) Ta có: ΔAMB = ΔAMC ⇒ ˆ B A M = ˆ C A M ⇒ B A M ^ = C A M ^ (2 góc tương ứng) ⇒ AM là tia phân giác của ˆ A A ^ c) Ta có: ΔAMB = ΔAMC ⇒ ˆ A M B = ˆ A M C ⇒ A M B ^ = A M C ^ (2 góc tương ứng) mà ˆ A M B + ˆ A M C = 180 o A M B ^ + A M C ^ = 180 o ⇒ ˆ A M B = ˆ A M C = 90 o ⇒ A M B ^ = A M C ^ = 90 o ⇒ AM ⊥ BC
3 tháng 1 2017

Bài không là theo c.c.c được mà phải làm c.g.c

Xét tam giác AMB và tam giác AMC

AM là cạnh chung

BM=CM

AMB=AMC=90 độ

=>tam giác AMB=AMC

tk nha bạn

thank you bạn

(^_^)

19 tháng 1 2017

vẽ thêm MD song song AH

MH song song AD

Xét tam giác MDA và tam giác AHM có

Góc A1 = góc M2 (so le trong)

Góc A2 = góc M1 ( so le trong)

AM là cạnh chung

\(\Rightarrow\)Tam giác MDA = tam giác AHM (g.c.g)

\(\Rightarrow\)MD = AH (2 cạnh tương ứng)

Xét tam giác MBD và tam giác CMH có

Góc BMD = góc MCH (đồng vị)

Góc D1 = góc H2 (=90)

BM = MC (giả thiết)

\(\Rightarrow\)Tam giác MBD = tam giác CMH (cạnh huyền - góc nhọn)

\(\Rightarrow\)BD = MH ( 2 cạnh tương ứng)

Xét tam giác BDM và tam giác MHA có

MD = AH ( cmt)

Góc D2 = góc H1 (=90)

BD = MH (cmt)

\(\Rightarrow\)tam giác MBD = tam giác MAH ( c.g.c)

\(\Rightarrow\)BM = AM (2 cạnh tương ứng)

Vì BM = MC và AM = BM

\(\Rightarrow\)AM = MC

Mà BC = BM + MC

\(\Rightarrow\)BC = 2*AM

\(\Rightarrow\)AM = \(\frac{1}{2}\cdot BC\)

Vậy AM = \(\frac{1}{2}\cdot BC\)