Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ thêm MD song song AH
MH song song AD
Xét tam giác MDA và tam giác AHM có
Góc A1 = góc M2 (so le trong)
Góc A2 = góc M1 ( so le trong)
AM là cạnh chung
\(\Rightarrow\)Tam giác MDA = tam giác AHM (g.c.g)
\(\Rightarrow\)MD = AH (2 cạnh tương ứng)
Xét tam giác MBD và tam giác CMH có
Góc BMD = góc MCH (đồng vị)
Góc D1 = góc H2 (=90)
BM = MC (giả thiết)
\(\Rightarrow\)Tam giác MBD = tam giác CMH (cạnh huyền - góc nhọn)
\(\Rightarrow\)BD = MH ( 2 cạnh tương ứng)
Xét tam giác BDM và tam giác MHA có
MD = AH ( cmt)
Góc D2 = góc H1 (=90)
BD = MH (cmt)
\(\Rightarrow\)tam giác MBD = tam giác MAH ( c.g.c)
\(\Rightarrow\)BM = AM (2 cạnh tương ứng)
Vì BM = MC và AM = BM
\(\Rightarrow\)AM = MC
Mà BC = BM + MC
\(\Rightarrow\)BC = 2*AM
\(\Rightarrow\)AM = \(\frac{1}{2}\cdot BC\)
Vậy AM = \(\frac{1}{2}\cdot BC\)
a, xét tam giác ABM và tam giác ACM có:
AB=AC
Góc B= góc C
BM=CM
=> tam giác ABM=tam giác ACM (c.g.c)
b, Xét tam giác ABC cân tại A có AM là đường trung tuyến => AM đồng thời là đường cao hay AM vuông góc với BC
a) Vì M là trung điểm của BC nên BM = BC
Xét 2 tam giác ABM và ACM có:
AM là cạnh chung (1)
BM=CM (2)
AB=AC (3)
Từ (1), (2),(3) => Tam giác ABM = tam giác ACM
b) Vì AB=AC => ABC là tam giác cân mà AM là đường trung tuyến nên:
=> AM cũng là đường cao hay AM vuông góc với BC
Trên tia đối của $MA$ lấy $N$ sao cho $MN=MA$
Ta có:
$BM=CM(gt)$
$\widehat{AMB}=\widehat{NMC}(đđ)$
$MA=MN(gt)$
$\Rightarrow \Delta{MAB}=\Delta{MNC}(c.g.c)$
$\Rightarrow AB=NC$ và $\widehat{MBA}=\widehat{MCN}$
Do đó $\widehat{MBA}=\widehat{MCN}$ nên $AB||NC$
$\Rightarrow \widehat{BAC}+\widehat{ACN}=90^o$
Lại có: $\widehat{BAC}=90^o$ nên $\widehat{ACN}=90^o$
$\Rightarrow \Delta{ABC}=\Delta{CNA}(c-g-c)$ vì:
$AC:chung$
$\widehat{BAC}=\widehat{ACN}=90^o$
$AB=NC$
$\Rightarrow BC=AN$
$\Rightarrow AM=\dfrac{1}{2}BC$ (đpcm)