Cho tam thức bậc hai f(x)=x2-(m+2)x+2m+1
Tìm m để bất phương trình f(x)>0 đúng với mọi \(x\in R\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng định lý về dấu của tam thức bậc 2
\(f(x)=3x^2-6(2m+1)x+12m+5>0\) với mọi \(x\in \mathbb{R}\)
\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)<0\)
\(\Leftrightarrow 36m^2-6<0\Leftrightarrow -\sqrt{\frac{1}{6}}< m<\sqrt{\frac{1}{6}}\)
Với m=−1m=−1 thì PT f(x)=0f(x)=0 có nghiệm x=1x=1 (chọn)
Với m≠−1m≠−1 thì f(x)f(x) là đa thức bậc 2 ẩn xx
f(x)=0f(x)=0 có nghiệm khi mà Δ′=m2−2m(m+1)≥0Δ′=m2−2m(m+1)≥0
⇔−m2−2m≥0⇔m(m+2)≤0⇔−m2−2m≥0⇔m(m+2)≤0
⇔−2≤m≤0⇔−2≤m≤0
Tóm lại để f(x)=0f(x)=0 có nghiệm thì m∈[−2;0]
Câu 1 : a/Δ Δ = (m+2)2 - 4(-1)(-4) = m2 +2m -12
ycbt <=> Δ > 0 <=> m2 +2m-12 > 0
<=> m < -1-\(\sqrt{13}\) ; m > -1+\(\sqrt{13}\)
Vậy giá trị cần tìm m ∈ (-∞; -1-\(\sqrt{13}\) ) U (-1+\(\sqrt{13}\) ; +∞)
b/ Δ = m2 +2m-12
ycbt <=> Δ < 0 <=> m2 +2m-12 < 0
<=> -1-\(\sqrt{13}\)<m< -1+\(\sqrt{13}\)
Câu 2 .
a/ Thay m=2 vào bpt ta được : 2x2+(2-1)x+1-2 >0
<=> 2x2 + x -1 > 0 <=> x < -1 ; x > \(\frac{1}{2}\)
\(f\left(x\right)=-x^2-2x+m-12< 0\forall x\)
\(\Rightarrow\Delta=4+4\left(m-12\right)< 0\Leftrightarrow m< 11\)
TH1: m=0
=>-(0-1)x=0
=>x=0
=>Loại
TH2: m<>0
\(\text{Δ}=\left(-m+1\right)^2-4m\cdot4m=m^2-2m+1-16m^2=-15m^2-2m+1\)
\(=-15m^2-5m+3m+1=\left(3m+1\right)\left(-5m+1\right)\)
Để pt có nghiệm đúng với mọi x thuộc R thì (3m+1)(-5m+1)>=0
=>(3m+1)(5m-1)<=0
=>-1/3<=m<=1/5
f(x)>0 <=>\(x^2-\left(m+2\right)x+2m+1>0\)
Bất phương trình có a=1>0
=>Bất phương trình đúng với mọi x thuộc tập số thực
<=>\(\Delta< 0\)(Vì khi \(\Delta\)<0 thì f(x) cùng dấu a với mọi x thuộc tập số thực)
\(\Leftrightarrow\left(m-2\right)^2-4\left(2m+1\right)< 0\)
\(\Leftrightarrow m^2-12m< 0\)
\(\Leftrightarrow0< m< 12\)