K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

f(x)>0 <=>\(x^2-\left(m+2\right)x+2m+1>0\)

Bất phương trình có a=1>0

=>Bất phương trình đúng với mọi x thuộc tập số thực

<=>\(\Delta< 0\)(Vì khi \(\Delta\)<0 thì f(x) cùng dấu a với mọi x thuộc tập số thực)

\(\Leftrightarrow\left(m-2\right)^2-4\left(2m+1\right)< 0\)

\(\Leftrightarrow m^2-12m< 0\)

\(\Leftrightarrow0< m< 12\)

Với m=1m=−1 thì PT f(x)=0f(x)=0 có nghiệm x=1x=1 (chọn)

Với m1m≠−1 thì f(x)f(x) là đa thức bậc 2 ẩn xx

f(x)=0f(x)=0 có nghiệm khi mà Δ=m22m(m+1)0Δ′=m2−2m(m+1)≥0

m22m0m(m+2)0⇔−m2−2m≥0⇔m(m+2)≤0

2m0⇔−2≤m≤0

Tóm lại để f(x)=0f(x)=0 có nghiệm thì m[2;0]

16 tháng 3 2016

ừm...để giải cái đã.Xem nào...
 

DD
24 tháng 1 2022

\(f\left(x\right)=x^2+2\left(m+1\right)x+m+3\)

Để \(f\left(x\right)\ge0\)với mọi \(x\inℝ\)thì: 

\(\hept{\begin{cases}a=1>0\\\Delta'=\left(m+1\right)^2-\left(m+3\right)\ge0\end{cases}}\Leftrightarrow m^2+m-2\ge0\)

\(\Leftrightarrow\left(m+2\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\).

2 tháng 4 2020

Câu 1 : a/Δ Δ = (m+2)2 - 4(-1)(-4) = m2 +2m -12
ycbt <=> Δ > 0 <=> m2 +2m-12 > 0
<=> m < -1-\(\sqrt{13}\) ; m > -1+\(\sqrt{13}\)
Vậy giá trị cần tìm m ∈ (-∞; -1-\(\sqrt{13}\) ) U (-1+\(\sqrt{13}\) ; +∞)

b/ Δ = m2 +2m-12
ycbt <=> Δ < 0 <=> m2 +2m-12 < 0
<=> -1-\(\sqrt{13}\)<m< -1+\(\sqrt{13}\)

2 tháng 4 2020

Câu 2 .
a/ Thay m=2 vào bpt ta được : 2x2+(2-1)x+1-2 >0
<=> 2x2 + x -1 > 0 <=> x < -1 ; x > \(\frac{1}{2}\)