Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)>0 <=>\(x^2-\left(m+2\right)x+2m+1>0\)
Bất phương trình có a=1>0
=>Bất phương trình đúng với mọi x thuộc tập số thực
<=>\(\Delta< 0\)(Vì khi \(\Delta\)<0 thì f(x) cùng dấu a với mọi x thuộc tập số thực)
\(\Leftrightarrow\left(m-2\right)^2-4\left(2m+1\right)< 0\)
\(\Leftrightarrow m^2-12m< 0\)
\(\Leftrightarrow0< m< 12\)
1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:
\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow a\ge\frac{1}{2}\)
2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)
3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)
4, Nếu m=0 => f(x)=-2x-1<0 (loại)
Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
\(a=1>0\) ; \(\Delta=\left(3-m\right)^2-4\left(-2m+3\right)=m^2+2m-3\)
Để \(f\left(x\right)>0\) ; \(\forall x\le-4\)
TH1: \(\Delta< 0\Leftrightarrow m^2+2m-3< 0\Leftrightarrow-3< m< 1\)
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}>-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+2m-3=0\\\frac{m-3}{2}>-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}\Delta>0\\-4< x_1< x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m-3>0\\\left(x_1+4\right)\left(x_2+4\right)>0\\\frac{x_1+x_2}{2}>-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m-3>0\\x_1x_2+4\left(x_1+x_2\right)+16>0\\x_1+x_2>-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m-3>0\\-2m+3+4\left(3-m\right)+16>0\\m-3>-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m-3>0\\-6m+31>0\\m>-5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\m< \frac{31}{6}\\m>-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-5< m< -3\\1< m< \frac{31}{6}\end{matrix}\right.\)
Kết hợp lại ta được: \(-5< m< \frac{31}{6}\)
Đặt \(f\left(x\right)=ax+b\Rightarrow\left\{{}\begin{matrix}f\left(2x-1\right)=a\left(2x-1\right)+b=2ax-a+b\\f\left(2x+1\right)=a\left(2x+1\right)+b=2ax+a+b\end{matrix}\right.\)
\(f\left(2x-1\right)+f\left(2x+1\right)-f\left(x\right)=x+3\)
\(\Leftrightarrow2ax-a+b+2ax+a+b-ax-b=x+3\)
\(\Leftrightarrow3ax-x+b-3=0\)
\(\Leftrightarrow\left(3a-1\right)x+\left(b-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-1=0\\b-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{3}\\b=3\end{matrix}\right.\) \(\Rightarrow f\left(x\right)=\frac{1}{3}x+3\)
a) △ = \(m^2-28\ge0\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{28}\\m\le-\sqrt{28}\end{matrix}\right.\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2\\x_1x_2=7\end{matrix}\right.\)
\(\Rightarrow m^2=24\)\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{24}\\m=-\sqrt{24}\end{matrix}\right.\)(không thỏa mãn)
b) △ = \(4-4\left(m+2\right)\ge0\)\(\Leftrightarrow m\le-1\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m+2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_2-x_1\right)^2+4x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)
\(\Rightarrow4+4\left(m+2\right)=4\)\(\Leftrightarrow m=-2\)(thỏa mãn)
c) △ = \(\left(m-1\right)^2-4\left(m+6\right)\)\(\ge0\)\(\Leftrightarrow m^2-2m+1-4m-24\ge0\)
\(\Leftrightarrow m^2-6m-23\ge0\)
\(\Leftrightarrow\left(m-3\right)^2\ge32\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{32}+3\\m\le-\sqrt{32}+3\end{matrix}\right.\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=m+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2-2m+1\\x_1x_2=m+6\end{matrix}\right.\)
\(\Rightarrow10+2\left(m+6\right)=m^2-2m+1\)
\(\Leftrightarrow m^2-4m-21=0\)\(\Leftrightarrow\left(m+3\right)\left(m-7\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-3\end{matrix}\right.\)\(\Leftrightarrow m=-3\)(thỏa mãn)
mấy câu kia cũng dùng Vi-ét xử tiếp nha
\(f\left(x\right)=-x^2-2x+m-12< 0\forall x\)
\(\Rightarrow\Delta=4+4\left(m-12\right)< 0\Leftrightarrow m< 11\)