chứng tỏ rằng 5+5 mũ 2 +5 mũ 3 +5 mũ 4 +........5 mũ 29 +5 mũ 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+.............+3^{24}\left(3+2^3+3^5\right)\)
\(B=273+273\cdot3^6+.............+273\cdot3^{24}\)
\(B=273\left(1+3^6+.......+3^{24}\right)⋮273\)
Đặt : \(A=5+5^2+5^3+...+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+...+5^{29}\right)\)
\(=6\left(5+5^3+...+5^{29}\right)⋮6\) (đpcm)
Bài giải
\(5+5^2+5^3+5^4+...+5^{29}+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=5\cdot6+5^3\cdot6+...+5^{29}\cdot6\)
\(=6\left(5+5^3+...+5^{29}\right)\text{ }⋮\text{ }6\)
\(\Rightarrow\text{ ĐPCM}\)
S= 5+52+53+...+52020+52021
5S=52+53+54+...+52021+52022
5S - S=4S=52022-5
Ta có: 4S+5=52022
=4S -5 +5 =52022
=> 4S=52022
a) \(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^6\left(5+5^2\right)=30+5^2.30+...+5^6.30\)
\(=30\left(1+5^2+...+5^6\right)⋮30\Rightarrowđpcm\)
b) \(B=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)=273+3^6.273+...+3^{24}.273\)
\(=273.\left(1+3^6+...+3^{24}\right)⋮273\Rightarrowđpcm\)
a: \(B=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)\)
\(=156\cdot5\cdot\left(1+5^4\right)\)
\(=780\left(1+5^4\right)⋮30\)
b: \(B=\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^2+3^5\right)\)
\(=273\cdot\left(1+...+3^{24}\right)⋮273\)
\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\)
\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\)
\(S=7.\left(2+2^4+...+2^{28}\right)\)
⇒ \(S⋮7\) ( điều phải chứng minh )
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\); \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\); ...; \(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
=> S < \(5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}< 5.1=5\)=> S<5
Lại có: \(\frac{1}{2^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\); \(\frac{1}{3^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\); \(\frac{1}{100^2}>\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
=> \(S>5\left(\frac{1}{2}-\frac{1}{101}\right)=5.\frac{101-2}{2.101}=\frac{5.99}{2.101}~2,45\)=> S>2
Vậy 2 < S < 5 => Đpcm
chia hết cho ...
cuối là chia hết cho 6