Cho tam giác ABC nhọn(AB<AC).Kẻ AH vuông góc với BC.Trên đoạn HC lấy điểm D sao cho HB=HD
a) Chứng minh AB=AD
b) Trên tia đối của HA lấy điểm E sao cho HE=HA.Cm AB//ED
c) Tia ED cắt AC tại I,tia AD cắt EC tại K.Cm DI=DK
d) Cm IK=BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek
đề đây nha mn :(( cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP
c cmr CE = CD tam giác AMD là tam giác j vì s
D CMR AM NHỎ HƠN AB +AC /2
CHỈ LM MỖI Ý D THUI NHA NHANH NHA
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xet ΔMAD có
MH vừa là đường cao,vừa là trung tuyến
=>ΔMAD cân tại M
d: AM<1/2(AB+AC)
=>AE<AB+AC
=>AE<BE+AB(luôn đúng)
a, Ta có: AH\(\perp\)BD(gt)
HB=HD(gt)
\(\Rightarrow\)AH là đường trung trực
\(\Rightarrow\)AB=AD (t/c đường trung trực trong tam giác)
b, Xét tam giác AHB và tam giác EHD có:
\(\widehat{AHB}=\widehat{EHD}=90^0\)(gt)
AH=HE(gt)
BH=HD(GT)
\(\Rightarrow\)Tam giác AHB = Tam giác EHD(c-g-c)
\(\Rightarrow\widehat{BHA}=\widehat{DEH}\)(2 góc tương ứng)
mà chúng có vị trí SLT
\(\Rightarrow\)AB//DE
Cm: a) Xét t/giác ABC có AH là đường cao và AH cũng là đường trung tuyến
=> t/giác ABC cân tại A
=> AB = AD
(có thể xét hai tam giác để giải)
b) Xét t/giác AHB và t/giác EHD
có BH = HD (gt)
AH = HE (gt)
\(\widehat{AHB}=\widehat{EHD}=90^0\)(đối đỉnh)
=> t/giác AHB = t/giác EHD (c.g.c)
=> \(\widehat{A_1}=\widehat{E_1}\)(2 góc t/ứng)
mà 2 góc này ở vị trí so le trong
=> AB // ED
c) Xét t/giác ACE có CH là đường cao
CH cũng là đường trung tuyến
=> t/giác ACE cân tại C
=> \(\widehat{EAC}=\widehat{AEC}\)
Xét t/giác DAE có DH là đường cao
DH cũng là đường trung tuyến
=> DAE cân tại D => AD = DE
=> \(\widehat{DAE}=\widehat{DEA}\)
Ta có: \(\widehat{CAE}=\widehat{CAD}+\widehat{DAE}\)
\(\widehat{CEA}=\widehat{CED}+\widehat{DEA}\)
mà \(\widehat{CAE}=\widehat{AEC}\) (cmt); \(\widehat{DAE}=\widehat{DEA}\)(cmt)
=> \(\widehat{CAD}=\widehat{CED}\)
Xét t/giác ADI và t/giác EDK
có: AD = DE (cmt)
\(\widehat{IAD}=\widehat{KED}\) (cmt)
\(\widehat{IDA}=\widehat{KDE}\) (đối đỉnh)
=> t/giác ADI = t/giác EDK (g.c.g)
=> DI = DK (2 cạnh t/ứng)
d) xem lại đề