Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: sin ACB=AH/AC
=>AH/AC=1/2
=>AH=4cm
b: sin ABC=2/3
=>AH/AB=2/3
=>AB=6cm
HB=căn 6^2-4^2=2căn 5cm
HC=căn 8^2-4^2=4căn 3cm
BC=HB+HC=2căn5+4căn3(cm)
S ABC=1/2*BA*BC*sinB
=1/2*1/2*6*(2căn5+4căn3)
=3(căn 5+2căn 3)
\(\dfrac{AB}{AC}=\dfrac{\sqrt{6}}{3}\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}\)
\(AB.AC=32\sqrt{6}\Rightarrow\dfrac{AC^2\sqrt{6}}{3}=32\sqrt{6}\)
\(\Rightarrow AC^2=96\Rightarrow AC=4\sqrt{6}\)
\(\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}=8\)
Kẻ đường cao AD ứng với BC
Do \(C=45^0\Rightarrow\widehat{CAD}=90^0-45^0=45^0\Rightarrow\Delta ACD\) vuông cân tại D
\(\Rightarrow AD=CD=\dfrac{AC}{\sqrt{2}}=4\sqrt{3}\)
Pitago tam giác vuông ABD:
\(BD=\sqrt{AB^2-AD^2}=4\)
\(\Rightarrow BC=CD+BD=4+4\sqrt{3}\)
\(cosB=\dfrac{BD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow B=60^0\)
\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.4\sqrt{3}.\left(4+4\sqrt{3}\right)=...\)
Theo định lý sin ta có:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^o=8\left(cm^2\right)\)
Mà: ΔAEC vuông tại E ta có:
\(AE=sinA\cdot AC=sin30^o\cdot8=4\left(cm\right)\)
ΔABD vuông tại D nên ta có:
\(AD=sinA\cdot AB=sin30^o\cdot4=2\left(cm\right)\)
Theo định lý sin ta có:
\(S_{AED}=\dfrac{1}{2}\cdot AE\cdot AD\cdot sinA\)
\(\Rightarrow S_{AED}=\dfrac{1}{2}\cdot4\cdot2\cdot sin30^o=2\left(cm^2\right)\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
a. Ta có: \(BC^2=100
\)
\(AB^2+AC^2=100\)
Vì \(AB^2+AC^2=BC^2\left(=100\right)\)
Nên ABC vuông tại A (Pytago đảo)
b. Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lý 3- HTL ta có:
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot8}{10}=4,8\)
=> AH=4,8
\(c.SinB=\dfrac{6}{10}=\dfrac{3}{5}=>B\cong37\)
\(SinC=\dfrac{8}{10}=\dfrac{4}{5}=>53\)
d. Ta có: Tam giác AHC vuông tại H
Áp đụng định lý Pytago vào tam giác ta được
\(HC^2=AC^2-AH^2\)
= 36-23,04=12,96
=>HC=3,6
\(SAHC=\dfrac{1}{2}\cdot AH\cdot HC=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)