tìm gtln của \(A=\frac{1}{\sqrt{x}+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mình hỏi câu a của bạn phân số đầu tiên bạn vứt mất x ở mẫu của mik đâu rồi
a) ĐK : \(x\ge0\)
A = \(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{1}{x-\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+1-3+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\cdot\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
b) \(A=\frac{\sqrt{x}}{x-\sqrt{x}+1}=\frac{x-\sqrt{x}+1-x+2\sqrt{x}-1}{x-\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le1\)
=> Max A = 1
Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\)<=> x = 1
Vậy Max A = 1 <=> x = 1
a) Điều kiện xác định : \(x\ge0;x\ne1\)
\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{\left(\sqrt{x}-1\right)\left(7-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}\)
b) Ta có : \(P=\frac{7-3\sqrt{x}}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=\frac{19}{\sqrt{x}+4}-3>-3\)
c) Theo b) : \(P=\frac{19}{\sqrt{x}+4}-3\)
Ta có : \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+4\ge4\Leftrightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\Leftrightarrow\frac{19}{\sqrt{x}+4}-3\le\frac{7}{4}\)
\(\Rightarrow P\le\frac{7}{4}\) . Dấu "=" xảy ra khi x = 0
Vậy P đạt giá trị lớn nhất bằng \(\frac{7}{4}\) , khi x = 0
\(A=\frac{1}{\sqrt{x}+3}\left(ĐK:x\ge0\right)\)
Vì \(\sqrt{x}\ge0\forall x\ge0\)
\(\Rightarrow\sqrt{x}+3\ge3\forall x\ge0\)
\(\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\forall x\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2=0^2\)
\(\Leftrightarrow x=0\left(TMĐK\right)\)
Vậy A đạt \(GTLN\)là \(\frac{1}{3}\Leftrightarrow x=0\)