K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

21 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

21 tháng 12 2021

Còn Câu B câu C nữa

21 tháng 12 2021

a)Xét tứ giác AMCK ta có: IM=IK( vì M đối xứng với K qua I); IA=IC(vì I là trung điểm của AC).

Do đó: tứ giác AMCK là hình bình hành.

Mà ∠AMC=90 độ(vì AMlà đường trung tuyến của ΔABC cân tại A  nên đồng thời là đường cao, hay AM⊥BC). Suy ra: AMCK là h.c.n(đpcm)

b) Vì AMCK là h.c.n.(chứng minh trên) nên AC=MK.

Mà AB=AC(tính chất tam giác cân). Do đó: AB=MK(=AC) (đpcm).

c) Để AMCK là hình vuông thì AM=AK⇒ΔAMK cân tại A. Khi đó đường trung tuyến AI sẽ đồng thời là đường cao, hay AI⊥MK.

Mặt khác, ta có: AB=MK(chứng minh trên); AK=BM(=MC). Do đó: AKMB là hình bình hành.

Suy ra:AB║MK. Mà MK⊥AI.nên AB⊥AI⇒AB⊥AC. Ta lại có: tam giác ABC cân tại A.

vậy nên: để AMCK là hình vuông thì tam giác ABC vuông cân tại A.

25 tháng 12 2021

a: Xét tứ giác AMCD có

I là trung điểm của AC

I là trung điểm của MD

Do đó: AMCD là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCD là hình chữ nhật

25 tháng 12 2021

câu b

ko biết giúp với

 

3 tháng 10 2018

Bạn tự vẽ hình

a, Do góc MIA = góc IAK= góc AKM=90nên tứ giác AKMI là hình chữ nhật

=> AM=IK ( tính chất hình chữ nhật)

b, Do AKMI là hình chữ nhật nên IM=AK, IM//AK=> IM//KH

Mà AK=HK(gt) nên IM=KH

Vì IM=KH, IM//KH nên IMHK là hình bình hành

c, Do O là giao điểm của hai đường chéo hình chữ nhật AKMI nên OI=OK

Do E là giao điểm của hai đường  chéo hình bình hành KHMI nên EM=EK

Xét tam giác KMI có OI=OK, ME=KE nên OE là đường trung bình của tam giác KMI

=> OE//IM 

Mà IM//AC nên OE//AC 

a: Xét tứ giác AMCK có 

I là trung điểm của AC
I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: \(S_{ABC}=\dfrac{AM\cdot BC}{2}=3\cdot4=12\left(cm^2\right)\)

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCK là hình chữ nhật

b: BM=CM=BC/2=3cm

\(AM=\sqrt{5^2-3^2}=4\left(cm\right)\)

S=1/2*AM*BC=1/2*6*4=3*4=12cm2

c: Để AMCK là hình vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

25 tháng 12 2023

a: Sửa đề: vẽ MH\(\perp\)AB, MK\(\perp\)AC

Xét tứ giác AHMK có

\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)

=>AHMK là hình chữ nhật

b: Vì ΔABC vuông tại A

nên \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)

\(=\dfrac{1}{2}\cdot6\cdot8=\dfrac{1}{2}\cdot48=24\left(cm^2\right)\)

 

19 tháng 12 2022

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đo: AMCK là hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

=>AB=MK

c: Để AMCK là hìh vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

d: P=(5+5+6)/2=8

\(S=\sqrt{8\left(8-6\right)\left(8-5\right)\left(8-5\right)}=\sqrt{16\cdot9}=12\left(cm^2\right)\)