K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

Qua D vẽ đường thẳng song song với AC cắt AB ở K

Ta có AD là đường phân giác trong của \(\Delta ABC\)

\(\Rightarrow\frac{AC}{AB}=\frac{CD}{DB}\)(theo tính chất đường phân giác trong tam giác)

CE là đường phân giác trong của \(\Delta ABC\)nên \(\frac{AC}{BC}=\frac{EA}{EB}\)(theo tính chất đường phân giác trong tam giác)

Mà AB > BC (gt) nên \(\frac{AC}{AB}< \frac{AC}{BC}\Rightarrow\frac{DC}{DB}< \frac{EA}{EB}\)(1)

\(\Delta ABC\)có \(DK//AC\)nên \(\frac{DC}{DB}=\frac{KA}{KB}\)(2)

Từ (1) và (2) suy ra \(\frac{KA}{KB}< \frac{EA}{EB}\)

\(\Rightarrow\frac{KA}{KB}+1< \frac{EA}{EB}+1\Rightarrow\frac{AB}{KB}< \frac{AB}{EB}\Rightarrow KB>EB\)

Do đó K không trùng E. Do vậy DE cắt AC, gọi M là giao điểm của DE và AC

Ta có \(\widehat{ADE}>\widehat{DAM}\)(\(\widehat{ADE}\)là góc ngoài của \(\Delta DAM\))

Mà \(\widehat{DAM}=\widehat{DAE}\)(gt) \(\Rightarrow\widehat{ADE}>\widehat{DAE}\)

\(\Rightarrow AE>DE\)(quan hệ giữa góc và cạnh đối diện trong tam giác) (3)

Mặt khác \(\widehat{DCE}=\widehat{ECA}\left(gt\right)\)mà \(\widehat{ECA}>\widehat{CED}\)(\(\widehat{ECA}\)là góc ngoài của \(\Delta CEM\))

Do đó \(\widehat{DCE}>\widehat{CED}\Rightarrow DE>DC\)(quan hệ giữa góc và cạnh đối diện trong tam giác) (4)

Từ (3) và (4) suy ra AE > DE > DC (đpcm)

16 tháng 7 2017

trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)

                                   AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)

tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)

4 tháng 4 2017

a) Xét tam giác ABD và tam giác AED có

AB=AE

BAD=DAE( vì AD là phân giác của BAC)

Cạnh AD chung

=> tam giác ABD= tam giác AED( c.g.c)

=>DB=DE

b) Có tam giác ABD= tam giác AED

=> ABD=AED

=>DBK=DEC( kề bù với 2 góc bằng nhau)

Xét tam giác BDK và tam giác EDC

BD=DE

BDK=EDC ( 2 góc đối đỉnh)

DBK=DEC

=> tam giác BDK= tam giác EDC ( g.c.g)

c) Tam giác BDK=tam giác EDC

=>DBK=DEC

Có DBK>C( DBK là góc ngoài tam giác ABC)

=>DEC>C

=>DC>DE

Mà DE=DE

=>DC>DB

4 tháng 4 2017

cam on

4 tháng 2 2020

a, xét tam giác ABE và tam giác FBE có : BE chung

góc ABE = góc FBE do BD là phân giác của góc ABC (gt)

góc AEB = góc FEB = 90 

=> tam giác ABE = tam giác FBE (ch-gn)

=> AB = BF (đn)

=> tam giác ABF cân tại B (đn)

b, xét tam giác ABD và tam giác FBD có : BD chung

góc ABD= góc FBD (Câu a)

AB = FB (Câu a)

=> tam giác ABD = tam giác FBD (c-g-c)

=> góc DFB = góc DAB  (đn)

góc DAB = 90 

=> góc DFB = 90

=> DF _|_ BC 

c, có  tam giác ABD = tam giác FBD  (Câu b)

=> AD = DF (đn)

=> tam giác DFA cân tại D (đn)

=> góc DFA = góc DAF (đn)                            (1)

góc DF _|_ BC 

AH _|_ BC

=> DF // AH (tc)

=> góc DFA = góc FAH (so le trong)   và (1)

=> góc DAF = góc FAH 

có AF nằm giữa AC và AH 

=> AF là phân giác của góc HAC (đn)

d, cm : tam giác CDF = tam giác IDA (cgv-gnk)

=> IA = CF

CM : BC = BI

CM : tam giác  DBI = tam giác DBC 

=> ...

4 tháng 2 2020

a, Ta có: Góc AEB = 90o (AE vuông góc với BD tại E) , Góc BEF = 90o (AE vuông góc với BD tại E)

Xét tam giác ABE và tam giác FBE, có

BE chung

Góc ABE = FBE (BD là phân giác của góc ABF)

Góc AEB = BEF (cùng = 90o)

=> Tam giác ABE = FBE (g.c.g)

=> AB = BF (2 cạnh tương ứng)

=> Tam giác ABF cân tại B (Định nghĩa tam giác cân)

    

A B C M D