Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAK có
BE là đường cao
BE là đường trung tuyến
Do đó: ΔBAK cân tại B
b: Xét ΔBAD và ΔBKD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔBAD=ΔBKD
Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)
Hình Bé tự vẽ nhé :v
a,
Xét tg BAE và tg BEK có:
+) Góc (BEA)= góc (BKE)
+) Góc (EBA)= góc (EBK)
+ BE chung
=> hai tg trên bằng nhau.
=> BA=BK
=> Tg BAK cân tại B
b,
Xét tg (BAD) và tg (BKD) có:
+) BA=BK ( cmt )
+) Góc (ABD)= góc (DBK)
+) BD chung
=> Hai tg này bằng nhau
=> Góc (BAD)= Góc (BKD)
Mà Góc (BAD)=90 độ => BKD =90 độ
=> DK vuông góc với BC
chỉ cần giải cho mình câu c,d thôi nha !!!
A - ri - ga - to ^-^
a.Xét hai tam giác vuông ABE và tam giác vuông KBE có
góc ABE = góc KBE = 90độ
cạnh BE chung
góc ABE = góc KBE [ gt ]
Do đó ; tam giác ABE = tam giác KBE [ g.c.g ]
\(\Rightarrow\) AB = KB [ cạnh tương ứng ]
Vậy tam giác ABK cân tại B
b.Xét tam giác ABD và tam giác KBD có
AB = KB [ vì tam giác ABE = tam giác KBE theo câu a ]
góc ABD = góc KBD [ vì BD là tia phân giác góc B ]
cạnh BD chung
Do đó ; tam giác ABD = tam giác KBD [ c.g.c ]
\(\Rightarrow\)góc BAD = góc BKD [ góc tương ứng ]
mà bài cho góc BAD = 90độ nên góc KBD = 90độ
Vậy DK vuông góc với BC
c.Vì DK vuông góc với BC và AH vuông góc với BC nên
DK // AH
Suy ra ; góc HAK = góc DKA [ ở vị trí so le trong ] [ 1 ]
Mặt khác ; AD = DK [ vì tam giác ABD = tam giác KBD ]
\(\Rightarrow\)tam giác ADK là tam giác cân tại D nên
góc DKA = góc DAK [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra
góc HAK = góc DAK
Vậy AK là tia pg góc KAD hay AK là tia pg góc HAC
thêu vũ bn kết bn vs mk đi mk có cách giải r nhưng hiện tại còn đợi 1 số việc nx khonagr ngày mai là có kết quả
a, xét tam giác ABE và tam giác FBE có : BE chung
góc ABE = góc FBE do BD là phân giác của góc ABC (gt)
góc AEB = góc FEB = 90
=> tam giác ABE = tam giác FBE (ch-gn)
=> AB = BF (đn)
=> tam giác ABF cân tại B (đn)
b, xét tam giác ABD và tam giác FBD có : BD chung
góc ABD= góc FBD (Câu a)
AB = FB (Câu a)
=> tam giác ABD = tam giác FBD (c-g-c)
=> góc DFB = góc DAB (đn)
góc DAB = 90
=> góc DFB = 90
=> DF _|_ BC
c, có tam giác ABD = tam giác FBD (Câu b)
=> AD = DF (đn)
=> tam giác DFA cân tại D (đn)
=> góc DFA = góc DAF (đn) (1)
góc DF _|_ BC
AH _|_ BC
=> DF // AH (tc)
=> góc DFA = góc FAH (so le trong) và (1)
=> góc DAF = góc FAH
có AF nằm giữa AC và AH
=> AF là phân giác của góc HAC (đn)
d, cm : tam giác CDF = tam giác IDA (cgv-gnk)
=> IA = CF
CM : BC = BI
CM : tam giác DBI = tam giác DBC
=> ...
a, Ta có: Góc AEB = 90o (AE vuông góc với BD tại E) , Góc BEF = 90o (AE vuông góc với BD tại E)
Xét tam giác ABE và tam giác FBE, có
BE chung
Góc ABE = FBE (BD là phân giác của góc ABF)
Góc AEB = BEF (cùng = 90o)
=> Tam giác ABE = FBE (g.c.g)
=> AB = BF (2 cạnh tương ứng)
=> Tam giác ABF cân tại B (Định nghĩa tam giác cân)