Chứng minh rằng \(444444444444443555555555555555\)là tích của hai số lẻ liên tiếp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:
\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)
\(=n^4+2n^3+3n^2+2n+1\)
Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)
\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)
\(=\left(n+\dfrac{1}{n}+1\right)^2\)
\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)
Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.
Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)
Theo đề ta có :
\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)
\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)^2\)
\(=\left[n\left(n+1\right)+1\right]^2\)
mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)
\(\Rightarrow n\left(n+1\right)+1\) là số lẻ
\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ
\(\Rightarrow dpcm\)
Sửa đề: Là số chẵn
Gọi hai số lẻ liên tiếp là 2n-1 và 2n-3
Ta có: \(\left(2n-1\right)^2-\left(2n-3\right)^2\)
\(=\left(2n-1-2n+3\right)\left(2n-1+2n-3\right)\)
\(=2\left(4n-4\right)⋮2\)
Gọi n; n+1 là hai số tự nhiên liên tiếp
Ta có \(\left(n+1\right)^2-n^2=n^2+2n+1-n^2=2n+1.\)
Nếu n lẻ => 2n chẵn => 2n+1 lẻ
Nếu n chẵn => 2n chẵn => 2n+1 lẻ
=> Hiệu bình phương hai số tự nhiên liên tiếp luôn là 1 số lẻ hay mỗi số lẻ là hiệu bình phương của 2 số tự nhiên liên tiếp
Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2
Ta có tổng 3 số tự nhiên liên tiếp là:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3
(n+1)2−n2=n2+2n+1−n2=2n+1.Nếu n lẻ => 2n chẵn => 2n+1 lẻNếu n chẵn => 2n chẵn => 2n+1 lẻ=> Hiệu bình phương hai số tự nhiên liên tiếp luôn là 1 số lẻ hay mỗi số lẻ là hiệu bình phương của 2 số tự nhiên liên tiếp Đúng 0
vào câu hỏi tương tự mà xem