Cho \(\Delta ABC\) vuông tại A , AB < AC . Từ A hạ đường thẳng vuông góc với BC tại H . Trên tia đối của HA lấy điểm D sao cho HA = HD
a, C/m : \(\Delta ABH=\Delta DBH\)
b, Tính : \(\Delta ABH=\Delta DBH\)
c, C/m : \(\widehat{HAC}=\widehat{HBD}\)
d, Trên đoạn HC lấy điểm E sao cho HB = HE . C/m : AE vuông góc với CD
Bài làm
a) Xét tam giác ABH và tam giác DBH có:
\(\widehat{AHB}=\widehat{DHB}=90^0\)
BH chung
HA = HD ( gt )
=> Tam giác ABH = tam giác DBH ( c.g.c )
c) Vì tam giác ABH = tam giác DBH ( theo câu a )
=> \(\widehat{ABH}=\widehat{DBH}\) ( hai góc tương ứng )
Xét tam giác ABH vuông tại H có:
\(\widehat{ABH}+\widehat{BAH}=90^0\)
Xét tam giác ABC có:
\(\widehat{ABH}+\widehat{HCA}=90^0\)
=> \(\widehat{BAH}=\widehat{HCA}\)
Xét tam giác AHC có:
\(\widehat{HAC}+\widehat{HCA}=90^0\)
=> \(\widehat{BAH}=\widehat{HCA}\)
=> \(\widehat{ABH}=\widehat{HAC}\)
=> \(\widehat{HAC}=\widehat{HBD}\) vì \(\widehat{ABH}=\widehat{HBD}\)
d) Xét tam giác HBD và tam giác HEA có:
BH = HE
\(\widehat{BHD}=\widehat{AHE}=90^0\)
HD = HA
=> Tam giác HBD = tam giác HEA ( c.g.c )
=> \(\widehat{BDH}=\widehat{HAE}\) ( hai góc tương ứng )
Xét tam giác BDH có: \(\widehat{DBH}+\widehat{BDH}=90^0\)
Xét tam giác ABC có: \(\widehat{ABH}+\widehat{ACH}=90^0\)
Mà \(\widehat{ABH}=\widehat{DBH}\)
=> \(\widehat{BDH}=\widehat{ACH}\)
=> \(\widehat{HAE}=\widehat{ACH}\)
Gọi giao điểm của AE với CD là I
Xét tam giác ADC có:
H là trung điểm của AD ( AH = HD )
CH vuông góc AD
=> CH là đường trung trực
=> CD = CA
=> Tam giác CAD cân tại C
=> CH cũng là tia phân giác
=> \(\widehat{ICE}=\widehat{EAC}\)
=> \(\widehat{HAE}=\widehat{ICE}\)
Xét tam goác IEC và tam giác AHE có:
\(\widehat{HEA}=\widehat{IEC}\) ( hai góc đối )
\(\widehat{HAE}=\widehat{ICE}\) ( cmt )
=> Tam giác IEC và tam giác AHE có diện tích bằng nhau.
=> \(\widehat{AHE}=\widehat{EIC}=90^0\)
Vậy AE vuông góc cới CD ( đpcm )