TÌm x
\(\left(2x-1\right)^2-9=0\)
Giúp tớ với!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có x^2-9 =0
=> x^2-3^2=0
=> (x-2)(x+2)=0
=> x-2=0 hoặc x+2=0
=> x=2 hoặc x=-2
Vậy....
b)x(x+2)=0
=>x=0 hoặc x+2=0
=> x=0 hoặc x=-2
Vậy ....
c) Tương tự a ...có 25=5^2
d)ta có 7x^2-28=0
=> 7*x^2 =28
<=>x^2=4
<=> x=2
Vậy .....
e ) , f) tự làm đi ...dễ mà
a) x2-9=0
=> x2=0+9=9
=> x2=9
=> x=9:3
=> x=3
c) x2-25=0
=> x2=0+25=25
=>x2=25
=> 25:2=5
=> x=5
a,
\(\left(\frac{1}{2}\right)^{2x+1}=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^{2x+1}=\left(\frac{1}{2}\right)^5\)
=>\(2x+1=5\)
2x=5-1
2x=4
x=4:2
x=2
b, mình không biết cách làm
a)\(\left(\frac{1}{2}\right)^{2x+1}=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^{2x+1}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow x=2\)
Ta có:\(\left|x-2\right|+\left|3x-4\right|=\left|2-x\right|+\left|3x-4\right|\)
\(\ge\left|2x+3x-4\right|=\left|2x-2\right|\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left(2-x\right)\left(3x-4\right)\ge0\)
\(\Leftrightarrow\frac{4}{3}\le x\le2\)
Ta lại có:\(\left|2x-3\right|+\left|2x-2\right|=\left|3-2x\right|+\left|2x+2\right|\)
\(\ge\left|3-2x+2x-2\right|=\left|1\right|=1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left(2x-3\right)\left(2x-2\right)\ge0\)
\(\Leftrightarrow1\le x\le\frac{3}{2}\)
\(\Rightarrow A=\left|x-2\right|+\left|2x-3\right|+\left|3x-4\right|\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\hept{\begin{cases}\frac{4}{3}\le x\le2\\1\le x\le\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)
Vậy \(A_{min}=1\)tại \(\frac{4}{3}\le x\le\frac{3}{2}\)
Vì \(\hept{\begin{cases}\left(x+2y-4\right)^2\ge0\\\left(2x-3y-1\right)^2\ge0\end{cases}}\)=> \(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2\ge0\)
\(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2=0\) <=> \(\left(x+2y-4\right)^2=\left(2x-3y-1\right)^2=0\)
<=>\(x+2y-4=2x-3y-1=0\)
\(x+2y-4=0\Leftrightarrow x+2y=4\Leftrightarrow2\left(x+2y\right)=8\Leftrightarrow2x+4y=8\)
\(2x-3y-1=0\Leftrightarrow2x-3y=1\)
=>\(\left(2x-3y\right)-\left(2x+4y\right)=1-8\)
=>\(2x-3y-2x-4y=-7\)
=>\(-7y=-7\)=>\(y=1\)=>\(x=2\)
Vậy .............................
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
ta có: x^2 +( 2x)^2 + (3x)^2 + (4x)^2+(5x)^2=220
x^2 + 4x^2 + 9x^2 + 16x^2 + 25x^2 =220
55x^2 =220
x^2 =4
mà x> 0 suy ra x=2
nhớ bấm 3 đúng cho mình nhé!
bai nay khong phai la cua lop 5 dau ,cua lop 6 day!!! Nhung ma du sao ket qua cung bang 2
\(\left(2x-1\right)^2-9=0\)
\(\left(2x-1-3\right)\left(2x-1+3\right)=0\)
\(\left(2x-4\right)\left(2x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-4=0\\2x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\(\left(2x-1\right)^2-9=0\)
\(\Leftrightarrow\left(2x-1-3\right)\left(2x-1+3\right)=0\)
\(\Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy \(x\in\left\{2;-1\right\}\)